2024届河南省五岳在线考试高二数学第二学期期末经典试题含解析_第1页
2024届河南省五岳在线考试高二数学第二学期期末经典试题含解析_第2页
2024届河南省五岳在线考试高二数学第二学期期末经典试题含解析_第3页
2024届河南省五岳在线考试高二数学第二学期期末经典试题含解析_第4页
2024届河南省五岳在线考试高二数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省五岳在线考试高二数学第二学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.962.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数关于点对称D.函数在上是增函数3.用反证法证明某命题时,对结论:“自然数中恰有一个偶数”正确的反设为()A.中至少有两个偶数 B.中至少有两个偶数或都是奇数C.都是奇数 D.都是偶数4.设,,都为大于零的常数,则的最小值为()。A. B. C. D.5.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.6.复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是()A. B. C. D.8.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B. C. D.9.已知随机变量的概率分布如下表,则()A. B. C. D.10.已知函数,则函数的大致图象是()A. B.C. D.11.已知复数z满足(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为()A.双曲线的一支 B.双曲线 C.一条射线 D.两条射线12.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.6二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若存在三个互不相等的实数,使得成立,则实数的取值范围是__________.14.若随机变量,且,则_______.15.已知函数为偶函数,则的解集为__________.16.若实数x,y满足,则的取值范围是__________;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围.18.(12分)从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.(1)求的分布列(结果用数字表示);(2)求所选3个中最多有1名女生的概率.19.(12分)在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.20.(12分)某玻璃工厂生产一种玻璃保护膜,为了调查一批产品的质量情况,随机抽取了10件样品检测质量指标(单位:分)如下:38,43,48,49,50,53,57,60,69,70.经计算得,,生产合同中规定:质量指标在62分以上的产品为优质品,一批产品中优质品率不得低于15%.(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差,利用该正态分布,是否有足够的理由判断这批产品中优质品率满足生产合同的要求?附:若,则,21.(12分)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为,某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.22.(10分)某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:∘C)的数据,如表:x258911y1210887(1)求y关于x的回归直线方程;(2)设该地3月份的日最低气温,其中μ近似为样本平均数,近似为样本方差,求参考公式:,计算参考值:..

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.2、D【解题分析】

由导函数的图象得到原函数的增减区间及极值点,然后逐一分析四个命题即可得到答案.【题目详解】由函数f(x)的导函数图象可知,当x∈(−∞,−a),(−a,b)时,f′(x)<0,原函数为减函数;当x∈(b,+∞)时,f′(x)>0,原函数为增函数.故不是函数的极值点,故A错误;当或时,导函数的值为0,函数的值未知,故B错误;由图可知,导函数关于点对称,但函数在(−∞,b)递减,在(b,+∞)递增,显然不关于点对称,故C错误;函数在上是增函数,故D正确;故答案为:D.【题目点拨】本题考查函数的单调性与导数的关系,属于导函数的应用,考查数形结合思想和分析能力,属于中等题.3、B【解题分析】

用反证法证明某命题时,应先假设命题的反面成立,求出要证的命题的否定,即为所求.【题目详解】解:用反证法证明某命题时,应先假设命题的反面成立,及要证的命题的否定成立,而命题:“自然数中恰有一个偶数”的否定为“中至少有两个偶数或都是奇数”,故选:B.【题目点拨】本题主要考查用反证法证明数学命题,求一个命题的否定,属于中档题.4、B【解题分析】

由于,乘以,然后展开由基本不等式求最值,即可求解.【题目详解】由题意,知,可得,则,所以当且仅当,即时,取等号,故选:B.【题目点拨】本题主要考查了利用基本不等式求最值问题,其中解答中根据题意给要求的式子乘以是解决问题的关键,着重考查了分析问题和解答问题的能力,属于中档题.5、A【解题分析】

先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.6、C【解题分析】

直接利用复数代数形式的运算法则化简,再利用复数的几何意义即可求出.【题目详解】,所以在复平面内,复数对应的点的坐标是,位于第三象限,故选C.【题目点拨】本题主要考查复数代数形式的四则运算法则的应用,以及复数的几何意义.7、B【解题分析】

先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【题目详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【题目点拨】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.8、C【解题分析】

试题分析:抛物线焦点为,准线方程为,由得或所以,故答案为C.考点:1、抛物线的定义;2、直线与抛物线的位置关系.9、C【解题分析】由分布列的性质可得:,故选C.10、A【解题分析】

根据函数的奇偶性和特殊值进行排除可得结果.【题目详解】由题意,所以函数为偶函数,其图象关于轴对称,排除D;又,所以排除B,C.故选A.【题目点拨】已知函数的解析式判断图象的大体形状时,可根据函数的奇偶性,判断图象的对称性:如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反,这是判断图象时常用的方法之一.11、C【解题分析】分析:利用两个复数的差的绝对值表示两个复数对应点之间的距离,来分析已知等式的意义.详解:∵复数z满足(i是虚数单位),在复平面内复数z对应的点为Z,则点Z到点(1,2)的距离减去到点(﹣2,﹣1)的距离之差等于3,而点(1,2)与点(﹣2,﹣1)之间的距离为3,故点Z的轨迹是以点(1,2)为端点的经过点(﹣2,﹣1)的一条射线.故选C.点睛:本题考查两个复数的差的绝对值的意义,两个复数的差的绝对值表示两个复数对应点之间的距离.12、B【解题分析】区间[22,31)内的数据共有4个,总的数据共有11个,所以频率为1.4,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:若存在三个互不相等的实数,使得成立,等价为方程存在三个不相等的实根,由于当时,,只有一个根,则当时,方程存在两个不相等的实根,构造函数,求函数的导数,研究函数的最值,即可得到结论.详解:若存在三个互不相等的实数,使得成立,等价为方程存在三个不相等的实根,当时,,,解得,当时,,只有一个根.当时,方程存在两个不相等的实根,即.设,,令,解得,当,解得,在上单调递增;当,解得,在上单调递减;又,,存在两个不相等的实根,.故答案为.点睛:本题考查导数的综合应用,根据条件转化为方程存在三个不相等的实根,构造函数,利用导数研究函数的极值是解决本题的关键,综合性较强,难度较大.14、【解题分析】

由,得,两个式子相加,根据正态分布的对称性和概率和为1即可得到答案.【题目详解】由随机变量,且,根据正态分布的对称性得且正态分布的概率和为1,得.故答案为0.15【题目点拨】本题考查了正态分布曲线的特点及曲线所表示的意义,属于基础题.15、【解题分析】

先求出,根据为偶函数,即可得出,从而得出,从而判断在上单调递增,且,这样即可由,得出,从而得出,这样解不等式即可.【题目详解】由题知函数为偶函数,则解得,所以,,故即答案为.【题目点拨】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用关系式:奇函数由恒成立求解,偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.16、;【解题分析】

令,,可将化为,根据三角函数值域可求得结果.【题目详解】可令,本题正确结果:【题目点拨】本题考查利用三角换元的方式求解取值范围的问题,关键是能够将问题转化为三角函数的值域的求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)将代入函数的解析式,利用分类讨论法来解不等式;(2)问题转化为解不等式,得出不等式组,从而得出实数的取值范围.【题目详解】(1)当时,,由,得,由,得,由,得.∴不等式的解集为;(2)不等式的解集包含,∴,即,由,得,∴,∴,问题∴.【题目点拨】本题考查绝对值不等式的解法,考查绝对值不等式中的参数问题,解题的关键就是将问题进行等价转化,通过构造不等关系来求解,考查分类讨论数学思想,属于中等题.18、(1)见解析;(2).【解题分析】试题分析:(1)由于总共只有2名女生,因此随机变量的取值只能为0,1,2,计算概率为,可写出分布列;(2)显然事件是互斥的,因此.试题解析:(1)由题意知本题是一个超几何分步,随机变量表示所选3人中女生的人数,可能取的值为0,1,2,的分布列为:012(2)由(1)知所选3人中最多有一名女生的概率为:.考点:随机变量分布列,互斥事件的概率.19、(Ⅰ)答案见解析;(Ⅱ)答案见解析.【解题分析】

(1)由题意考查两人的平均值均为82,方差甲乙分别为,结合方差可知乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.(2)由题意可知:ξ的所有可能取值为0,1,2,结合超几何分布概率公式求得概率值,得到分布列,然后计算可得均值为.【题目详解】(I)学生甲的平均成绩x甲==82,学生乙的平均成绩x乙==82,又s=×[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77,s=×[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=,则x甲=x乙,s>s,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.(II)随机变量ξ的所有可能取值为0,1,2,且P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,则ξ的分布列为ξ012P所以均值E(ξ)=0×+1×+2×=.20、(I)(II)有足够的理由判断这批产品中优质品率满足生产合同的要求,详见解析【解题分析】

(Ⅰ)10件样品中优质品的频率为,记任取3件,优质品数为,则,计算得到答案.(Ⅱ)记这种产品的质量指标为,由题意知,得到答案.【题目详解】(I)10件样品中优质品的频率为,记任取3件,优质品数为,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论