




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市2024届数学高二第二学期期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.2.已知是可导函数,且对于恒成立,则A. B.C. D.3.小明同学在做市场调查时得到如下样本数据13610842他由此得到回归直线的方程为,则下列说法正确的是()①变量与线性负相关②当时可以估计③④变量与之间是函数关系A.① B.①② C.①②③ D.①②③④4.设奇函数的最小正周期为,则()A.在上单调递减 B.在上单调递减C.在上单调递增 D.在上单调递增5.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数的虚部为()A. B. C. D.6.对两个变量x,y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…(xn,yn),则下列说法中不正确的是A.由样本数据得到的回归方程必过样本点的中心B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.7.已知中,若,则的值为()A.2 B.3 C.4 D.58.定义运算,,例如,则函数的值域为()A. B. C. D.9.已知函数,若函数有个零点,则实数的取值范围为()A. B. C. D.10.数列an中,则anA.3333 B.7777 C.33333 D.7777711.函数在处的切线与双曲线的一条渐近线平行,则双曲线的离心率是()A. B. C. D.12.如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为()A.55 B.89 C.120 D.144二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有两个极值点,,且,若存在满足等式,,且函数至多有两个零点,则实数的取值范围为__________.14.设随机变量服从正态分布,且,则__________.15.已知变量,满足约束条件,设的最大值和最小值分别是和,则__________.16.已知随机变量,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知复数满足,,其中,为虚数单位.(l)求:(2)若.求实数的取值范围.18.(12分)在直角坐标系中,圆的方程为.(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;(Ⅱ)直线的参数方程是(为参数),与交于两点,,求的斜率.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程与圆的直角坐标方程;(2)设动点在圆上,动线段的中点的轨迹为,与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.20.(12分)某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:甲类乙类男性居民315女性居民66(Ⅰ)根据上表中的统计数据,完成下面的列联表;男性居民女性居民总计不参加体育锻炼参加体育锻炼总计(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?附:,其中.0.100.050.012.7063.8416.63521.(12分)在平面直角坐标系xoy中,已知直线的参数方程为,直线与抛物线相交于A,B两点,求线段AB的长.22.(10分)已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点,设1)证明:PE⊥BC;2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
计算结果.【题目详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【题目点拨】本题考查了棱柱的体积公式,属于简单题型.2、D【解题分析】分析:构造函数,利用导数判断其单调性即可得出.详解:已知是可导函数,且对于恒成立,即恒成立,令,则,函数在R上单调递减,,即,化为.故选:D.点睛:本题是知识点交汇的综合题,考查综合运用函数思想解题的能力,恰当构造函数,利用导数判断单调性是解题的关键.3、C【解题分析】
根据数据和回归方程对每一个选项逐一判断得到答案.【题目详解】①变量与线性负相关,正确②将代入回归方程,得到,正确③将代入回归方程,解得,正确④变量与之间是相关关系,不是函数关系,错误答案为C【题目点拨】本题考查了回归方程的相关知识,其中中心点一定在回归方程上是同学容易遗忘的知识点.4、B【解题分析】分析:利用辅助角公式将函数进行化简,根号函数的周期和奇偶性即可得到结论.详解:,
∵函数的周期是,,
∵)是奇函数,
即∴当时,即则在单调递减,
故选:B.点睛:本题主要考查三角函数的解析式的求解以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.5、C【解题分析】
先由题意得到,进而可求出结果.【题目详解】由题意可得:,所以虚部为.故选C【题目点拨】本题主要考查复数的应用,熟记复数的概念即可,属于常考题型.6、C【解题分析】由样本数据得到的回归方程必过样本中心,正确;残差平方和越小的模型,拟合的效果越好,正确用相关指数R2来刻画回归效果,R2越大,说明模型的拟合效果越好,不正确,线性相关系数|r|越大,两个变量的线性相关性越强,故正确。故选:C.7、A【解题分析】
根据利用二项展开式的通项公式、二项式系数的性质、以及,即可求得的值,得到答案.【题目详解】由题意,二项式,又由,所以,其中,由,可得:,即,即,解得,故选A.【题目点拨】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.8、D【解题分析】分析:欲求函数y=1*2x的值域,先将其化成分段函数的形式,再画出其图象,最后结合图象即得函数值的取值范围即可.详解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x∴f(x)=由图知,函数y=1*2x的值域为:(0,1].故选D.点睛:遇到函数创新应用题型时,处理的步骤一般为:①根据“让解析式有意义”的原则,先确定函数的定义域;②再化简解析式,求函数解析式的最简形式,并分析解析式与哪个基本函数比较相似;③根据定义域和解析式画出函数的图象④根据图象分析函数的性质.9、D【解题分析】
画出函数的图像,将的零点问题转化为与有个交点问题来解决,画出图像,根据图像确定的取值范围.【题目详解】当时,,所以,当时,,所以,当时,,所以.令,易知,所以,将函数有个零点问题,转化为函数图像,与直线有个交点来求解.画出的图像如下图所示,由图可知,而,故.故选D.【题目点拨】本小题主要考查分段函数图像与性质,考查函数零点问题的求解策略,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.10、C【解题分析】
分别计算a1、a2、a3归纳出an的表达式,然后令【题目详解】∵an=11⋯1︸a3猜想,对任意的n∈N*,an=11⋯1【题目点拨】本题考查归纳推理,解归纳推理的问题的思路就由特殊到一般,寻找出规律,根据规律进行归纳,考查逻辑推理能力,属于中等题。11、D【解题分析】
计算函数在处的切线斜率,根据斜率计算离心率.【题目详解】切线与一条渐近线平行故答案选D【题目点拨】本题考查了切线方程,渐近线,离心率,属于常考题型.12、A【解题分析】
根据杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,找出规律,即可求出数列的第10项,得到答案.【题目详解】由题意,可知,,故选A.【题目点拨】本题主要考查了归纳推理的应用,其中解答中读懂题意,理清前后项的关系,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:首先确定的范围,然后结合函数的性质整理计算即可求得最终结果.详解:由可得:,由于,故,由可知函数的单调性与函数的单调性相同:在区间上单调递增,在区间上单调递减,在区间上单调递增,很明显是函数的一个零点,则满足题意时应有:,由韦达定理有:,其中,则:,整理可得:,由于,故,则.即实数的取值范围为.点睛:本题主要考查导函数研究函数的性质,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.14、【解题分析】分析:根据随机变量服从正态分布,看出这组数据对应的正态曲线的对称轴,根据正态曲线的特点,得到,从而可得结果.详解:随机变量服从正态分布,,得对称轴是,所以,可得,故答案为.点睛:本题考查正态曲线的性质,从形态上看,正态分布是一条单峰,对称呈种形的曲线,其对称轴,并在时取最大值,从点开始,曲线向正负两个方向递减延伸,不断逼近轴,但永不与轴相交,因此说明曲线在正负两个方向都是以轴为渐近线的.15、【解题分析】
在平面直角坐标系内,画出不等式组所表示的平面区域,可以发现变量,都是正数,故令,这样根据的几何意义,可以求出的取值范围,利用表示出,利用函数的性质,可以求出的最值,最后计算出的值.【题目详解】在平面直角坐标系内,画出不等式组所表示的平面区域,如下图所示:从图中可知:变量,都是正数,令,它表示不等式组所表示的平面区域内的点与原点的连线的斜率,解方程组:,可得点,解方程组:,可得点,所以有,因此,,,故.【题目点拨】本题考查了不等式所表示的平面区域,考查了斜率模型,考查了数形结合思想.16、0.8【解题分析】
直接根据正态分布的对称性得到答案.【题目详解】随机变量,故.故答案为:.【题目点拨】本题考查了正态分布,意在考查学生对于正态分布对称性的灵活运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
根据复数的概念和复数的运算法则求解.【题目详解】解:(1)(2)∴,解得:;【题目点拨】本题考查共轭复数、复数的模和复数的运算,属于基础题.18、(Ⅰ);(Ⅱ).【解题分析】试题分析:(Ⅰ)利用,化简即可求解;(Ⅱ)先将直线化成极坐标方程,将的极坐标方程代入的极坐标方程得,再利用根与系数的关系和弦长公式进行求解.试题解析:(Ⅰ)化圆的一般方程可化为.由,可得圆的极坐标方程.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线的极坐标方程为.设,所对应的极径分别为,,将的极坐标方程代入的极坐标方程得.于是,..由得,.所以的斜率为或.19、(1)的直角坐标方程是.直线的普通方程为.(2).【解题分析】
(1)消去参数后可得的普通方程,把化成,利用互化公式可得的直角方程.(2)设点,则,利用在椭圆上可得的直角方程,联立直线的普通方程和的直角坐标方程可得的直角坐标.【题目详解】解:(1)由,得,将互化公式代上式,得,故圆的直角坐标方程是.由,得,即.所以直线的普通方程为.(2)设点.由中点坐标公式得曲线的直角坐标方程为.联立,解得,或.故点的直角坐标是.【题目点拨】极坐标转化为直角坐标,关键是,而直角坐标转化为极坐标,关键是.参数方程化为直角方法,关键是消去参数,消参的方法有反解消参、平方消参、交轨法等.20、(Ⅰ)列联表见解析;(Ⅱ)有90%的把握认为参加体育锻炼与否与性别有关.【解题分析】
(Ⅰ)直接根据给出的数据填入表格即可;(Ⅱ)根据列联表,代入公式,计算出的观测值与临界值进行比较,进而得出结论.【题目详解】解:(Ⅰ)填写的列联表如下:男性居民女性居民总计不参加体育锻炼369参加体育锻炼15621总计181230(Ⅱ)计算,∴有90%的把握认为参加体育锻炼与否与性别有关.【题目点拨】本题主要考查列联表及独立性检验,较基础.21、【解题分析】
直线的普通方程为,即,与抛物线方程联立方程组解得,∴.22、(1)见解析;(2).【解题分析】分析:(1)以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明PE⊥BC;(2)求出平面PEH的法向量和=(1,0,-1),利用向量法能求出直线PA与平面PEH所成角的正弦值.详解:以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角坐标系如图,则A(1,0,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建三明永安市公安局招聘警务辅助人员19人考前自测高频考点模拟试题及答案详解(全优)
- 2025广东潮州市饶平县新塘镇人民政府招聘后勤服务人员1人模拟试卷完整答案详解
- 2025海南琼海市招商局招聘编外人员1人(1号)模拟试卷含答案详解
- 2025年度威海机械工程高级技工学校公开招聘教师(6人)考前自测高频考点模拟试题含答案详解
- 用户参与度提升策略-第5篇-洞察与解读
- 2025春季中国电气装备平高集团、平高电气校园招聘模拟试卷及一套参考答案详解
- 2025北京大兴区妇幼保健院临时辅助用工招录岗位12人考前自测高频考点模拟试题及完整答案详解一套
- 2025年吉安市庐陵产业运营服务有限公司公开招聘物业经理模拟试卷及答案详解(各地真题)
- 2025黑龙江齐齐哈尔市建华区北华街道公益性岗位招聘模拟试卷及答案详解(有一套)
- 2025湖北襄阳市神农架林区审计局招聘投资审计专业技术人员2名模拟试卷及答案详解(名校卷)
- (2025)辅警笔试题库及参考答案
- 退役军人服务授课课件
- 劳动保障监察投诉书格式及写作范文
- 淮北矿业安全管理办法
- 中班幼儿在角色游戏中同伴模仿行为研究
- 2026年高考语文备考之家庭伦理小说知识点
- 联名合作授权协议书范本
- ECMO护理进修汇报
- 营救小羊中班课件
- 跟岗干部管理办法中组部
- 乐理知识入门教学课件
评论
0/150
提交评论