2024届云南省昆明市八校联考数学八下期末综合测试模拟试题含解析_第1页
2024届云南省昆明市八校联考数学八下期末综合测试模拟试题含解析_第2页
2024届云南省昆明市八校联考数学八下期末综合测试模拟试题含解析_第3页
2024届云南省昆明市八校联考数学八下期末综合测试模拟试题含解析_第4页
2024届云南省昆明市八校联考数学八下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省昆明市八校联考数学八下期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点0,-5在()A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上2.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm3.在平面直角坐标系中,点)平移后能与原来的位置关于轴对称,则应把点()A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位4.计算:=()(a>0,b>0)A. B. C.2a D.2a5.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同 D.甲、乙射击成绩稳定性无法比较6.不列调查方式中,最合适的是()A.调查某品牌电脑的使用寿命,采用普查的方式B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式D.调查苏州地区初中学生的睡眠时间,采用普查的方式7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是().A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<08.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4π B.2π C.π D.9.炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是A. B. C. D.10.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y="0."5t-2(8<t≤12)二、填空题(每小题3分,共24分)11.已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.12.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC=

_________13.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.14.将一元二次方程化成一般式后,其一次项系数是______.15.△ABC中,已知:∠C=90°,AB=17,BC=8,则AC=_____.16.已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).17.如图,函数()和()的图象相交于点,则不等式的解集为_________.18.计算:________.三、解答题(共66分)19.(10分)计算(1);(2)()2﹣(﹣)(+).20.(6分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。21.(6分)已知:如图,,,求的面积.22.(8分)将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.23.(8分)小王开了一家便利店,今年1月份开始盈利,2月份盈利5000元,4月份的盈利达到7200元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利达到多少元?24.(8分)(1)先化简,再求值:,其中;(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.25.(10分)旅客乘乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数.其图象如图所示.(1)当旅客需要购买行李票时,求出y与x之间的函数关系式;(2)当旅客不愿意购买行李票时,最多可以携带多少行李?26.(10分)已知矩形0ABC在平面直角坐标系内的位置如图所示,点0为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),点Q为线段AC上-点,其坐标为(5,n).(1)求直线AC的表达式(2)如图,若点P为坐标轴上-动点,动点P沿折线AO→0C的路径以每秒1个单位长度的速度运动,到达C处停止求Δ0PQ的面积S与点P的运动时间t(秒)的函数关系式.(3)若点P为坐标平面内任意-.点,是否存在这样的点P,使以0,C,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标,若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

依据坐标轴上的点的坐标特征即可求解.【题目详解】解:∵点(1,-5),横坐标为1∴点(1,-5)在y轴负半轴上故选:D.【题目点拨】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为1,y轴上点的横坐标为1.2、D【解题分析】

根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.【题目详解】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=4cm,∴BC=8cm,∵AB=AC,四边形DEFG是正方形,∴DG=EF,BD=CE,在Rt△BDG和Rt△CEF,,∴Rt△BDG≌Rt△CEF(HL),∴BG=CF=2,∴EC=2,∴AC=4cm.故选D.【题目点拨】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.3、C【解题分析】

先求出点A关于y轴的对称点,即可知道平移的规律.【题目详解】∵点关于y轴的对称点为(2,3)∴应把点向右平移个单位,故选C.【题目点拨】此题主要考查直角坐标系的坐标变换,解题的关键是熟知找到点A关于y轴的对称点.4、C【解题分析】

根据二次根式的除法法则计算可得.【题目详解】解:原式,故选C.【题目点拨】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.5、B【解题分析】

要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【题目详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴s甲2=1∵5>4,∴乙射击成绩比甲稳定.故选:B.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解题分析】

本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【题目详解】A.调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;C.要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;D.调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;故选B【题目点拨】此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来7、C【解题分析】试题分析:根据k<1,正比例函数的函数值y随x的增大而减小解答.∵直线y=kx的k<1,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>1.考点:(1)、一次函数图象上点的坐标特征;(2)、正比例函数的图象.8、B【解题分析】

如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.【题目详解】如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.【题目点拨】本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.9、D【解题分析】试题分析:由乙队每天安装x台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:.故选D.10、D【解题分析】试题分析:由题意知小高从家去上班花费的时间为12分钟,当8<t≤12,小高正在走那段下坡路;小高从家门口骑车去离家4千米的单位上班,平路1千米,上坡路0.2×5=1千米,则下坡路长2千米,走下坡路花了4分钟,走下坡路的速度是0.5千米/分钟;若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为y=2+0.5•(t-8)=0.5t-2考点:求函数关系式点评:本题考查求函数关系式,做此类题的关键是审清楚题,找出题中各量之间的关系二、填空题(每小题3分,共24分)11、【解题分析】

把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.【题目详解】解:把(1,a)代入y=2x得a=2,所以方程组的解为.故答案为:.【题目点拨】本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.12、1【解题分析】解:∵在矩形ABCD中,AO=AC,BO=BD,AC=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB为等边三角形,∴AC=2AB=1.13、(﹣5,4).【解题分析】

首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.【题目详解】由题知A(3,0),B(-2,0),D在y轴上,∴AB=3-(-2)=5,OA=3,BO=2,由菱形邻边相等可得AD=AB=5,在Rt△AOD中,由勾股定理得:OD==4,由菱形对边相等且平行得CD=BA=5,所以C(-5,4).故答案为(﹣5,4).【题目点拨】本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.14、-7【解题分析】

根据完全平方公式进行化简即可求解.【题目详解】由得x2-7x-3=0∴其一次项系数是-7.【题目点拨】此题主要考查一元二次方程的一般式,解题的关键是熟知完全平方公式.15、15【解题分析】

根据勾股定理即可算出结果.【题目详解】在△ABC中,∠C=90°,AB=17,BC=8,所以AC=故答案为:15【题目点拨】本题考查了勾股定理,掌握勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方,是解题的关键.16、>【解题分析】

分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【题目详解】∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,∴y1=-3,y1=-6,∵-3>-6,∴y1>y1.17、【解题分析】

写出直线在直线下方部分的的取值范围即可.【题目详解】解:由图可知,不等式的解集为;故答案为:.【题目点拨】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.18、【解题分析】

原式化简后,合并即可得到结果.【题目详解】解:原式=,故答案为:.【题目点拨】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(共66分)19、(1);(2)6+4.【解题分析】

(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.【题目详解】(1)原式==;(2)原式===.【题目点拨】本题考查了二次根式的混合运算.先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.【解题分析】

(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【题目详解】解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).答:到2020年底,全省5G基站的数量是6万座.(2)设年平均增长率为,由题意可得:,解得:,(不符合,舍去)答:2020年底到2022年底,全省5G基站数量的年平均增长率为.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、14【解题分析】试题分析:构造矩形,用矩形的面积减去3个直角三角形的面积即可求得.试题解析:如图,构造矩形,,,,,.22、(1)四边形DHBG是菱形,理由见解析;(2)1.【解题分析】

(1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;(2)设DH=BH=x,则AH=8-x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.【题目详解】解:四边形是菱形.理由如下:∵四边形、是完全相同的矩形,∴,,.在和中,,∴,∴.∵,,∴四边形是平行四边形,,∴,∴,∴是菱形.由,设,则,在中,,即,解得:,即,∴菱形的面积为.【题目点拨】本题考查了菱形的判定与性质、矩形的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)利用等角对等边找出DH=BH;(2)利用勾股定理求出菱形的边长.23、(1);(2)8640元.【解题分析】

(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.

(2)5月份盈利=4月份盈利×增长率.【题目详解】解:(1)设每月盈利平均增长率为,根据题意得:,解得:(不符合题意舍去)答:每月盈利的平均增长率为;(2),答:按照这个平均增长率,预计5月份这家商店的盈利将达到8640元.【题目点拨】本题考查的是二次方程的实际应用,熟练掌握二次方程是解题的关键.24、(1)-;(2)【解题分析】

(1)直接将括号里面通分运算,进而结合分式的加减运算法则计算得出答案;(2)根据题意得出不等式组,进而得出答案.【题目详解】解:(1)当时,代入得:原式(2)解:根据题意得,解得:,∴原不等式组的解集是﹐∴a的取值范围是﹒【题目点拨】此题主要考查了分式的化简求值以及不等式组的解法,正确掌握分式的混合运算法则是解题关键.25、(1);(2)当旅客不愿意购买行李票时,最多可以携带30千克行李.【解题分析】

(1)根据题意设一次函数关系式为y=kx+b,把图上的点(60,5),(90,10)代入关系式利用待定系数法可求得函数关系式.(2)令y=0,解方程x-5=0即可求解.【题目详解】(1)设(1)将,代入解得:得:(2)当时,解得答:当旅客不愿意购买行李票时,最多可以携带30千克行李【题目点拨】本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.26、(1);(2)当点P在A0上运动时,S=2t+20,当点P在0C上运动时,S(10≤t≤18);(3)点P的坐标为(5,12),(5,-4),(-5,4)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论