江苏省无锡市敔山湾实验学校2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
江苏省无锡市敔山湾实验学校2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
江苏省无锡市敔山湾实验学校2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
江苏省无锡市敔山湾实验学校2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
江苏省无锡市敔山湾实验学校2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市敔山湾实验学校2024届数学八年级第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.对于函数下列说法正确的是A.当时,y随x的增大而增大 B.当时,y随x的增大而减小C.当时,y随x的增大而减小 D.当时,2.如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接()A.AE B.AB C.AD D.BE3.下列各式中,与3是同类二次根式的是()A.6 B.12 C.15 D.184.一同学将方程化成了的形式,则m、n的值应为()A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣75.点P是△ABC内一点,且P到△ABC的三边距离相等,则P是△ABC哪三条线的交点()A.边的垂直平分线 B.角平分线C.高线 D.中位线6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍 B.扩大9倍 C.不变 D.扩大3倍7.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等.以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个8.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.菱形的对角线相等9.下列调查方法合适的是()A.为了了解冰箱的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式10.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1) B.x2+2x﹣1=(x﹣1)2C.x2﹣1=(x﹣1)2 D.x2﹣x+2=x(x﹣1)+211.关于x的方程m-1x-1A.2 B.﹣2 C.1 D.﹣112.一天早上小华步行上学,他离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开.为了不迟到,小华跑步到了学校,则小华离学校的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.14.如图,在中,,、分别是、的中点,延长到点,使,则_____________.15.如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;16.如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.17.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.18.一个n边形的内角和是720°,则n=_____.三、解答题(共78分)19.(8分)电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式(2)利用函数关系式,说明电力公司采取的收费标准(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?20.(8分)关于x、y的方程组的解满足x﹣2y≥1,求满足条件的k的最大整数值.21.(8分)用配方法解方程:x2-6x+5=022.(10分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.23.(10分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.24.(10分)如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).(1)求直线l2的解析式;(2)根据图象,求四边形OACD的面积.25.(12分)一项工程若由甲队单独去做,刚好能如期完成;若由乙队单独做,要比规定时间多用5天才完成;若甲乙两队合做4天,余下的工程由乙队单独去做,也正好如期完成.这项工程预期几天完成?26.(1)计算:﹣×(2)解方程:x2﹣4x﹣5=0

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据分段函数的性质解答即可.【题目详解】解:A、当时,y随x的增大而减小,错误;B、当时,y随x的增大而增大,错误;C、当时,y随x的增大而减小,正确;D、当时,,错误;故选:C.【题目点拨】本题主要考查一次函数的性质,掌握分段函数的性质解答是解题的关键.2、C【解题分析】

根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.【题目详解】AE=4,AB=3,由勾股定理得AD=,3<<4,BE==1.故选C.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3、B【解题分析】

先化简二次根式,再根据同类二次根式的定义判定即可.【题目详解】解:A、6与3的被开方数不同,不是同类二次根式,故本选项错误.

B、12=23,与3的被开方数相同,是同类二次根式,故本选项正确.

C、15与3的被开方数不同,不是同类二次根式,故本选项错误.

D、18=32,与3的被开方数不同,不是同类二次根式,故本选项错误.

故选:B.【题目点拨】本题考查同类二次根式,解题的关键是二次根式的化简.4、B【解题分析】

先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.【题目详解】解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,∴,解得:故选:B.【题目点拨】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.5、B【解题分析】

根据到角的两边的距离相等的点在角的平分线上解答.【题目详解】∵P到△ABC的三边距离相等,∴点P在△ABC的三条角平分线上,∴P是△ABC三条角平分线的交点,故选:B.【题目点拨】本题考查的是角平分线的性质,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.6、B【解题分析】

将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.【题目详解】解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.【题目点拨】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7、C【解题分析】

根据平行四边形的判定定理可知①②③可以判定四边形ABCD是平行四边形.故选C.8、C【解题分析】分析:根据平行四边形、矩形、菱形的性质分别判断得出即可.详解:A.根据平行四边形的性质,平行四边形的对角线互相平分不相等,故此选项错误;B.根据矩形的性质,矩形的对角线相等,不互相垂直,故此选项错误;C.根据菱形的性质,菱形的对角线互相垂直且平分,故此选项正确;D.根据菱形的性质,菱形的对角线互相垂直且平分但不相等,故此选项错误.故选C.点睛:本题主要考查平行四边形、矩形、菱形的性质,熟练掌握相关定理是解题的关键.9、C【解题分析】

A.为了了解冰箱的使用寿命,采用普查的方式,故A错误;B.为了了解全国中学生的视力状况,采用普查的方式,故B错误;C.为了了解人们保护水资源的意识,采用抽样调查的方式,故C正确;D.对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式,故D错误;故选C.【题目点拨】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.10、A【解题分析】

由题意根据因式分解的意义,即可得答案判断选项.【题目详解】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故A符合题意;B、x2+2x+1=(x+1)2,故B不符合题意;C、x2﹣1=(x+1)(x﹣1),故C不符合题意;D、不能分解,故D不符合题意;故选:A.【题目点拨】本题考查因式分解的意义,一提,二套,三检查,注意分解要彻底.11、A【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【题目详解】方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=1.故选:A.【题目点拨】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值12、B【解题分析】

根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.【题目详解】解:根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.故选:B.【题目点拨】本题考查函数的图象,关键是根据题意得出距离先减小再增大,然后不变后减小为1进行判断.二、填空题(每题4分,共24分)13、35.【解题分析】

利用四边形内角和得到∠BAD’,从而得到∠α【题目详解】如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35【题目点拨】本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补14、2【解题分析】

连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.【题目详解】连接EF,AE.∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=AB.又∵AD=AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.在Rt△ABC中,∵E为BC的中点,BC=4,∴AE=BC=2.又∵四边形AEFD是平行四边形,∴DF=AE=2.【题目点拨】本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.15、60【解题分析】

先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.【题目详解】解:∵∠BAC=120°,AB=AC,∴∠C===30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为60°.【题目点拨】本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.16、3:1【解题分析】

根据同高的两个三角形面积之比等于底边之比得,,再由点O是▱ABCD的对角线交点,根据平行四边形的性质可得S△AOB=S△BOC=S▱ABCD,从而得出S1与S1之间的关系.【题目详解】解:∵,,∴S1=S△AOB,S1=S△BOC.∵点O是▱ABCD的对角线交点,∴S△AOB=S△BOC=S▱ABCD,∴S1:S1=:=3:1,故答案为:3:1.【题目点拨】本题考查了三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出,是解答本题的关键.17、2.10【解题分析】由题意可知,将木块展开,

相当于是AB+2个正方形的宽,

∴长为2+0.2×2=2.4米;宽为1米.

于是最短路径为:故答案是:2.1.18、1【解题分析】

多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.【题目详解】依题意有:(n﹣2)•180°=720°,解得n=1.故答案为:1.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、解答题(共78分)19、(1)(2)用户月用电量在0度到100度之间时,每度电的收费标准是0.1元,超出100度时,每度电的收费标准是0.80元.(3)用户用电62度时,用户应缴费40.3元,若用户月缴费105元时,该用户该月用了150度电.【解题分析】试题分析:由图象可知,当0≤x≤100时,可设该正比例函数解析式为y=kx,当x>100时,可设该一次函数解析式为y=kx+b,进而利用待定系数法求出函数表达式;根据图象,月用电量在0度到100度之间时,求出每度电的收费的标准,月用电量超出100度时,求出每度电的收费标准;先根据自变量的值确定出对应的函数表达式,再代入求证即可.试题解析:(1)设当0≤x≤100时,函数解析式为y=kx(k≠0).将(100,1)代入y=kx得:100k=1,解得k=0.1.则y=0.1x(0≤x≤100).设当x>100时,函数解析式为y=ax+b(a≠0).将(100,1),(130,89)代入y=kx+b得:,解得:.则y=0.8x-15(x>100)所以y与x的函数关系式为;(2)根据(1)的函数关系式得:月用电量在0度到100度之间时,每度电的收费的标准是0.1元;月用电量超出100度时,每度电的收费标准是0.8元;(3)用户月用电62度时,62×0.1=40.3,用户应缴费40.3元,用户月缴费105元时,即0.8x-15=105,解得x=150,该用户该月用了150度电.点睛:本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.列一次方程组解应用题的步骤:(1)审清题意,明确问题中的已知量、未知量以及各种量之间的关系;(2)设未知数,有直接设未知数和间接设未知数两种,无论怎样设未知数,一定要注意题目的未知量必须能用所设的未知数表示出来;(3)列方程组,找出题目中的相等关系,再根据这些相等关系列出含有未知数的等式组成方程组.这是列方程组解应用题的重要步骤;(4)解方程组,并对求出的解进行检验,看是否符合题目中的实际意义;(5)求出答案.20、满足条件的k的最大整数值为1.【解题分析】

将两方程相减得出x,y的值,再把x,y的值代入x﹣1y≥1,即可解答【题目详解】解关于x,y的方程组,得,把它代入x﹣1y≥1得,3﹣k﹣1(3k﹣6)≥1,解得k≤1,所以满足条件的k的最大整数值为1.【题目点拨】此题考查二元一次方程组的解和解一元一次不等式,解题关键在于求出x,y的值再代入21、x1=5,x2=1.【解题分析】

首先移项,把方程变形为x2-6x=-5的形式,方程两边同时加上一次项系数的一半,则方程的左边是完全平方式,右边是常数,然后利用直接开平方法即可求解.【题目详解】x2-6x+5=0移项得,x2-6x=-5x2-6x+9=-5+9,∴(x-3)2=4,∴x-3=±2,解得x1=5,x2=1.【题目点拨】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22、(1)见解析;(2)见解析;(3)不一定成立,见解析.【解题分析】

(1)求证AB=AC,就是求证∠B=∠C,利用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC即可;

(2)首先得出Rt△OEB≌Rt△OFC,则∠OBE=∠OCF,由等边对等角得出∠OBC=∠OCB,进而得出∠ABC=∠ACB,由等角对等边即可得AB=AC;

(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【题目详解】(1)证明:∵点O在边BC上,OE⊥AB,OF⊥AC,点O到△ABC的两边AB,AC所在直线的距离相等,

∴OE=OF,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),

∴∠ABC=∠ACB,

∴AB=AC;

(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,

由题意知,OE=OF.∠BEO=∠CFO=90°,

∵在Rt△OEB和Rt△OFC中

∴Rt△OEB≌Rt△OFC(HL),

∴∠OBE=∠OCF,

又∵OB=OC,

∴∠OBC=∠OCB,

∴∠ABC=∠ACB,

∴AB=AC;

(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)

【题目点拨】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.23、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.【解题分析】

先证明和是等边三角形,再证明≌,可得结论;由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.【题目详解】,证明:、F的速度相同,且同时运动,,又四边形ABCD是菱形,,,,是等边三角形,同理也是等边三角形,,在和中,,≌,;由得:≌,,,,是等边三角形,,如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,,,,的最小值是,中,,,,,;如图3,当点E运动到DC边上时,大小不发生变化,在和中,,≌,,,,,,,、B、M、D四点共圆,.【题目点拨】此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论