2024届广东省深圳市龙华新区数学八年级第二学期期末检测模拟试题含解析_第1页
2024届广东省深圳市龙华新区数学八年级第二学期期末检测模拟试题含解析_第2页
2024届广东省深圳市龙华新区数学八年级第二学期期末检测模拟试题含解析_第3页
2024届广东省深圳市龙华新区数学八年级第二学期期末检测模拟试题含解析_第4页
2024届广东省深圳市龙华新区数学八年级第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳市龙华新区数学八年级第二学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.2.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%3.如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有(

)条A.1 B.2 C.3 D.44.下列二次根式是最简二次根式的是()A. B. C. D.5.函数y=中自变量x的取值范围为()A.x≥0 B.x≥-1 C.x>-1 D.x≥16.下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=7.如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A. B. C. D.8.下列四组线段中,不能构成直角三角形的是()A.4,5,6 B.6,8,10 C.7,24,25 D.5,3,49.如图,直线的解析式为,直线的解析式为,则不等式的解集是()A. B. C. D.10.已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1,2)在这个反比例函数上,a的值可以是(

)A.0 B.1 C.2 D.311.若点P(a,b)在第二象限内,则a,b的取值范围是()A.a<0,b>0 B.a>0,b>0 C.a>0,b<0 D.a<0,b<012.随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的.设这种电子产品的价格在这两年中平均每年下降x,则根据题意可列出方程()A.1﹣2x B.2(1﹣x) C.(1﹣x)2 D.x(1﹣x)二、填空题(每题4分,共24分)13.当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.14.如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A、B两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比值为________.15.如图,矩形ABCD中,,,将矩形折叠,使点B与点D重合,点A的对应点为,折痕EF的长为________.16.如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.17.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.18.如图,D为△ABC的AC边上的一点,∠A=∠DBC=36°,∠C=72°,则图中共有等腰三角形____个.三、解答题(共78分)19.(8分)计算:(4+)(4﹣)20.(8分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)求出y1、y2关于x的函数关系式?(3)如果共有50人参加时,选择哪家旅行社合算?21.(8分)现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).图②矩形(正方形),分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.22.(10分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。(1)求证:四边形ADEF为矩形;(2)若∠C=30°、AF=2,写出矩形ADEF的周长。23.(10分)边长为,的矩形发生形变后成为边长为,的平行四边形,如图1,平行四边形中,,边上的高为,我们把与的比值叫做这个平行四边形的“形变比”.(1)若形变后是菱形(如图2),则形变前是什么图形?(2)若图2中菱形的“形变比”为,求菱形形变前后的面积之比;(3)当边长为3,4的矩形变后成为一个内角是30°的平行四边形时,求这个平行四边形的“形变比”.24.(10分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6min发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前走,小亮取回借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆。已知骑车的速度是步行速度的2倍,如图是小亮和姐姐距离家的路程y(m)与出发的时间x(min)的函数图象,根据图象解答下列问题:(1)小亮在家停留了多长时间?(2)求小亮骑车从家出发去图书馆时距家的路程y(m)与出发时间x(min)之间的函数解析式.25.(12分)某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?26.先化简,再求值:,其中

参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.2、C【解题分析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C.3、C【解题分析】

如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.【题目详解】解:如图1,过点B作BG∥EF,过点C作CN∥PH,∵正方形ABCD,∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,∴四边形BGEF,四边形PNCH是平行四边形,

EF=BG,PH=CN,∵PH=EF,∴BG=CN,在Rt△ABG和Rt△CBN中,BG=CN∴Rt△ABG≌Rt△CBN(HL)∴∠ABG=∠BCN,∵∠ABG+∠GBC=90°∴∠BCN+∠GBC=90°,∴BG⊥CN,∴PH⊥EF,∴过点M作EF的垂线满足的有一条直线;如图2图2中有两条P1H1,P2H2,所以满足条件的直线PH最多有3条,故答案为:C【题目点拨】本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.4、B【解题分析】

根据最简二次根式的概念即可求出答案.【题目详解】(A)原式=2,故A不是最简二次根式;(C)原式=2,故B不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【题目点拨】此题考查最简二次根式,解题关键在于掌握运算法则5、B【解题分析】根据题意得:x+1≥0,解得:x≥-1.故选:B.6、C【解题分析】试题解析:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.考点:正比例函数的定义.7、A【解题分析】

解:根据题意,需得出x与y的关系式,也就是PB与CQ的关系,∵AB=AC=2,∠BAC=20°∴△ABC是等腰三角形,∠ABC=∠ACB,又∵三角形内角和是180°∴∠ABC=(180°-∠BAC)÷2=80°∵三角形的外角等于与其不相邻的两个内角之和∴∠PAB+∠P=∠ABC即∠P+∠PAB=80°,又∵∠BAC=20°,∠PAQ=100°,∴∠PAB+∠QAC=80°,∴∠P=∠QAC,同理可证∠PAB=∠Q,∴△PAB∽△AQC,∴,代入得得出,y与x的关系式,由此可知,这是一个反比例函数,只有选项A的图像是反比例函数的图像.故选:A【题目点拨】本题考查三角形的外角性质,等腰三角形的性质,相似三角形的判定与性质,反比例函数图像.难度系数较高,需要学生综合掌握三角形的原理,相似三角形的判定,以及基本函数图像综合运用.8、A【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【题目详解】解:A、42+52≠62,故不是直角三角形,符合题意;B、62+82=102,能构成直角三角形,不符合题意;C、72+242=252,能构成直角三角形,不符合题意;D、32+42=52,能构成直角三角形,不符合题意.故选:A.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、D【解题分析】

由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.【题目详解】不等式对应的函数图象是直线在直线“下方”的那一部分,其对应的的取值范围,构成该不等式的解集.所以,解集应为,直线过这点,把代入易得,.故选:D.【题目点拨】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.10、A【解题分析】根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.解:∵反比例函数,在每个象限内y随着x的增大而增大,∴函数图象在二、四象限,∴图象上的点的横、纵坐标异号.A、a=0时,得P(-1,2),故本选项正确;B、a=1时,得P(0,2),故本选项错误;C、a=2时,得P(1,2),故本选项错误;D、a=3时,得P(2,2),故本选项错误.故选A.此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.11、A【解题分析】

点在第二象限的条件是:横坐标是负数,纵坐标是正数.【题目详解】解:因为点P(a,b)在第二象限,所以a<0,b>0,故选A.【题目点拨】本题考查了平面直角坐标系中各象限点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、C【解题分析】

设这种电子产品的价格在这两年中平均每年下降x,该电子产品两年前的价格为a元,根据该电子产品两年前的价格及今年的价格,即可得出关于x的一元二次方程,此题得解.【题目详解】设这种电子产品的价格在这两年中平均每年下降x,该电子产品两年前的价格为a元,根据题意得:a(1﹣x)2a,即(1﹣x)2,故选C.【题目点拨】本题考查了一元二次方程的应用,弄清题意,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每题4分,共24分)13、-2【解题分析】

∵函数y=-(m-2)+(m-4)是一次函数,∴,∴m=-2.故答案为-214、2【解题分析】

如图,连接AC、BC、BE、AE,根据图形可知四边形ACBE是正方形,进而利用正方形的性质求出即可【题目详解】如图,连接AC、BC、BE、AE,∵五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,∴四边形ACBE是正方形,∵CD⊥AB,∴点D为对角线AB、CE的交点,∴CD=AB,∴这个矩形的长与宽的比值为=2,故答案为:2【题目点拨】此题主要考查了图形的剪拼,正确利用正方形的性质是解题关键.15、【解题分析】

过点F作FH⊥AD于H,先利用矩形的性质及轴对称的性质证明DE=DF=BF,在Rt△DCF中通过勾股定理求出DF的长,再求出HE的长,再在Rt△HFE中利用勾股定理即可求出EF的长.【题目详解】解:如图,过点F作FH⊥AD于H,∵四边形ABCD为矩形,∴BC∥AD,∠C=90°,DC=AB=4,四边形DCFH为矩形,∴∠BFE=∠DEF,由折叠可知,∠BFE=∠DFE,BF=DF,∴∠DEF=∠DFE,∴DE=DF=BF,在Rt△DCF中设DF=x,则CF=BC-BF=6-x,∵DC2+CF2=DF2,∴42+(6-x)2=x2,解得,x=,∴DE=DF=BF=,∴CF=BC-BF=6-=,∵四边形DCFH为矩形,∴HF=CD=4,DH=CF=,∴HE=DE-DH=,∴在Rt△HFE中,故答案为【题目点拨】本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够灵活运用矩形的性质及轴对称的性质.16、1【解题分析】

如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.【题目详解】如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.故答案为:1.【题目点拨】本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.17、11【解题分析】

根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据即可得到答案.【题目详解】解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案为:11.【题目点拨】本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.18、1【解题分析】

由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.【题目详解】解:∵∠C=72゜,∠A=∠DBC=16゜,

∴∠BDC=180°-∠DBC-∠C=72°=∠C,

∴BC=BD,即△BCD是等腰三角形;

∴∠ABD=∠BDC-∠A=16°=∠A,

∴AD=BD,即△ABD是等腰三角形;

∴∠ABC=∠ABD+∠DBC=72°=∠C,

∴AB=AC,即△ABC是等腰三角形.

故答案为:1.【题目点拨】此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.三、解答题(共78分)19、1.【解题分析】

根据运算法则一一进行计算.【题目详解】原式=42﹣()2=16﹣7=1.【题目点拨】本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.20、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析【解题分析】

(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.【题目详解】解:(1)由图象可得,当参加老师的人数为30时,两家旅行社收费相同;(2)设y1关于x的函数关系式是y1=ax,30a=1800,得a=60,即y1关于x的函数关系式是y1=60x;设y2关于x的函数关系式是y2=kx+b,,得,即y2关于x的函数关系式是y2=40x+600;(3)由图象可得,当x>50时,乙旅行社比较合算,∴如果共有50人参加时,选择乙家旅行社合算.【题目点拨】本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21、(1)、答案见解析;(2)、答案见解析;(3)、答案见解析【解题分析】试题分析:(1)、剪出一个非正方形的矩形,过平行四边形的一个定点作垂线即可;(2)、链接平行四边形的对角线即可得出答案;(3)、找到一边的中点,然后连接其中一个顶点和对边的中点即可.试题解析:如图所示.考点:四边形的性质22、(1)证明见解析(2)2【解题分析】

(1)连接DE.根据三角形的中位线的性质即可得到结论;(2)根据矩形的性质得到∠BAC=∠FEC=90°,解直角三角形即可得到结论.【题目详解】(1)连接DE,∵E、F分别是AC,BC中点∴EF//AB,EF=12∵点D是AB中点∴AD=12∴四边形ADFE为平行四边形∵点D、E分别为AB、AC中点∴DE=12∵BC=2AF∴DE=AF∴四边形ADEF为矩形.(2)∵四边形ADFE是矩形,∴∠BAC=∠FEC=90°,∵AF=2,F为BC中点,∴BC=4,CF=2,∵∠C=30°∴AC=23,CE=3∴AE=3∴矩形ADEF的周长为23【题目点拨】本题考查三角形中位线定理及应用,矩形的判定和性质,学生应熟练掌握以上定理即可解题.23、(1)正方形;(2);(3)或.【解题分析】

(1)根据形变后的图形为菱形,即可推断.(2)由题意得形变比,再分别用代数式表示形变前和形变后的面积,计算比值即可.(3)分以AB为底边和以AD为底边两种情况讨论,可求这个平行四边形的“形变比”.【题目详解】(1)∵形变后是菱形∴AB=BC=CD=DA则形变前的四条边也相等∵四条边相等的矩形是正方形∴形变前的图形是正方形(2)根据题意知道:S形变前=a×b=a2S形变后=a×h=a××a=a2∴(3)当形变后四边形一个内角为30°时此时应分两种情况讨论:第一种:以AB为底边4×=2∴这个四边形的形变比为:第二种:以AD为底边则∴这个四边形的形变比为:.【题目点拨】本题考查了正方形、菱形的性质,正方形的面积和菱形的面积的求法,还利用了同底等高的三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论