版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市广信区2024届数学八下期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)2.函数中自变量x的取值范围是()A.x≥1B.x≤1C.x≠1D.x>13.下列各图象能表示是的一次函数的是()A. B.C. D.4.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.125.在等腰三角形ABC中,AB=4,BC=2,则ΔABC的周长为()A.10 B.8 C.8或10 D.6或86.甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是()A.= B.= C.= D.=7.若,两点都在直线上,则与的大小关系是()A. B. C. D.无法确定8.下列各式不能用公式法分解因式的是()A. B.C. D.9.在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是()A.众数是98 B.平均数是91C.中位数是96 D.方差是6210.设、是方程的两根,则+=()A.-3 B.-1 C.1 D.3二、填空题(每小题3分,共24分)11.公元9世纪,阿拉伯数学家阿尔•花拉子米在他的名著《代数学》中用图解一元二次方程,他把一元二次方程x2+2x-35=0写成x2+2x=35的形式,并将方程左边的x2+2x看作是由一个正方形(边长为x)和两个同样的矩形(一边长为x,另一边长为1)构成的矩尺形,它的面积为35,如图所示。于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表小为:x2+2x+____=35+_______,整理,得12.若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.13.实数64的立方根是4,64的平方根是________;14.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°,AB=2,则BC的长为___________.15.某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.16.如图,把一张矩形的纸沿对角线BD折叠,若AD=8,AB=6,则BE=__.17.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.18.将函数的图象向上平移2个单位,所得的函数图象的解析为________.三、解答题(共66分)19.(10分)如图,分别延长平行四边形ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形20.(6分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:;反之,;∴;∴.仿上例,求:(1);(2)若,则、与、的关系是什么?并说明理由.21.(6分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.22.(8分)某市对八年级部分学生的数学成绩进行了质量监测(分数为整数,满分100分),根据质量监测成绩(最低分为53分)分别绘制了如下的统计表和统计图分数59.5分以下59.5分以上69.5分以上79.5分以上89.5分以上人数34232208(1)求出被调查的学生人数,并补全频数直方图;(2)若全市参加质量监测的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)23.(8分)如图,正方形的边长为8,在上,且,是上的一动点,求的最小值.24.(8分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.(1)若,试求的值;(2)当,点是线段的中点时,试判断四边形的形状,并说明理由.(3)直线与轴相交于点.当四边形为正方形时,请求出的长度.25.(10分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE(1)如图1,连接BG、DE,求证:BG=DE(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD①求∠BDE的度数②若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________26.(10分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.2、A【解题分析】试题分析:当x+1≥0时,函数有意义,所以x≥1,故选:A.考点:函数自变量的取值范围.3、B【解题分析】
一次函数的图象是直线.【题目详解】解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.故选:B.【题目点拨】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.4、B【解题分析】试题分析:设多边形的边数为n,则=135,解得:n=8考点:多边形的内角.5、A【解题分析】
等腰△ABC的两边长分别为4和2,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【题目详解】①当腰是AB,则周长为4+4+2=10;②当腰是BC,则三边为4,2,2,此时不能构成三角形,舍去.故选A.【题目点拨】此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论6、A【解题分析】
设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.【题目详解】设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,根据题意得:=.故选A.【题目点拨】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7、C【解题分析】
根据一次函数的性质进行判断即可.【题目详解】解:∵直线的K=2>0,∴y随x的增大而增大,∵-4<-2,∴.故选C.【题目点拨】本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.8、C【解题分析】
根据公式法有平方差公式、完全平方公式,可得答案.【题目详解】A、x2-9,可用平方差公式,故A能用公式法分解因式;B、-a2+6ab-9b2能用完全平方公式,故B能用公式法分解因式;C、-x2-y2不能用平方差公式分解因式,故C正确;D、x2-1可用平方差公式,故D能用公式法分解因式;故选C.【题目点拨】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.9、D【解题分析】
根据数据求出众数、平均数、中位数、方差即可判断.【题目详解】A.98出现2次,故众数是98,正确B.平均数是=91,正确;C.把数据从小到大排序:80,83,96,98,98,故中位数是96,正确故选D.【题目点拨】此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解.10、B【解题分析】
根据一元二次方程根与系数的关系解答即可.【题目详解】解:∵、是方程的两根,∴+=-1.故选:B【题目点拨】本题考查了一元二次方程根与系数的关系,若是一元二次方程的两个根,则.二、填空题(每小题3分,共24分)11、111【解题分析】
由图可知添加一个边长为1的正方形即可补成一个完整的正方形,由此即可得出答案.【题目详解】解:由图可知添加一个边长为1的正方形即可补成一个面积为36的正方形,故第一个空和第二个空均应填1,而大正方形的边长为x+1,故x+1=6,x=1,故答案为:1,1,1.【题目点拨】此题是信息题,首先读懂题意,正确理解题目解题意图,然后抓住解题关键,可以探索得到大正方形的边长为x+1,而大正方形面积为36,由此可以求出结果.12、1【解题分析】
先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.【题目详解】解:方程两边同时乘以x﹣1,得:3﹣ax=3+1(x﹣1),解得x=,∵是正整数,且≠1,∴a+1=4,或a+1=1,且a≠0,a=1或a=-1(不符合题意,舍去)∴非负整数a的值为:1,故答案为:1.【题目点拨】本题考查了解分式方程,注意不要漏掉分母不能为零的情况.13、【解题分析】
根据平方根的定义求解即可.【题目详解】.故答案为:.【题目点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.14、【解题分析】
由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.【题目详解】,,四边形为矩形,为等边三角形,,,在中,由勾股定理可求得.故答案为:.【题目点拨】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.15、1【解题分析】
根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.【题目详解】解:设当x>18时的函数解析式为y=kx+b,图象过(18,54),(28,94)∴,得即当x>18时的函数解析式为:y=4x-18,
∵102>54,
∴小丽家用水量超过18立方米,∴当y=102时,102=4x-18,得x=1,
故答案为:1.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16、【解题分析】试题解析:∵AD∥BC,∴∠EDB=∠CBD,又∠EBD=∠CBD,∴∠EBD=∠EDB,∴EB=ED,又BC′=BC=AD,∴EA=EC′,在Rt△EC′D中,DE2=EC′2+DC′2,即DE2=(8-DE)2+62,解得DE=.17、(﹣1,0)【解题分析】
根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.【题目详解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为(-1,0).【题目点拨】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.18、【解题分析】
根据“上加下减”的原则进行解答即可.【题目详解】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
故答案为:.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.三、解答题(共66分)19、证明见解析.【解题分析】
由平行四边形的性质可得AB=CD,AD=BC,∠ADC=∠ABC,由“AAS”可证△ADF≌△CBE,可得AF=CE,DF=BE,可得AE=CF,则可得结论.【题目详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ADC=∠ABC,∴∠ADF=∠CBE,且∠E=∠F,AD=BC,∴△ADF≌△CBE(AAS),∴AF=CE,DF=BE,∴AB+BE=CD+DF,∴AE=CF,且AF=CE,∴四边形AECF是平行四边形.【题目点拨】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练运用平行四边形的判定和性质是本题的关键.20、(1);(2),.理由见解析.【解题分析】
(1)根据阅读材料即可求解;(2)根据阅读材料两边同时平方即可求解.【题目详解】(1);(2),;∵,∴,∴,∴,.【题目点拨】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则.21、(1)AF=BC;a;(2)猜想:AF=BC,(3)【解题分析】
(1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;(2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;(3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.【题目详解】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△PAD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC=,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△PAB的“夹补中线”=.【题目点拨】此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.22、(1)见解析;(2)2800人.【解题分析】
(1)根据图中所列的表,参加测试的总人数为59.5分以上和59.5分以下的和;根据直方图,再根据总人数,即可求出在76.5-84.5分这一小组内的人数;(2)根据成绩优秀的学生所占的百分比,再乘以4500即可得出成绩优秀的学生数.【题目详解】解:(1)被调查的学生人数为3+42=45人,76.5~84.5的人数为45﹣(3+7+10+8+5)=12人,补全频数直方图如下:(2)估计成绩优秀的学生约有4500×=2800人.【题目点拨】本题考查了频数(率)分布直方图,用样本估计总体,牢牢掌握这些是解答本题的关键.23、的最小值是1.【解题分析】
连接,,根据点与点关于对称和正方形的性质得到DN+MN的最小值即为线段BM的长.【题目详解】解:∵四边形是正方形,∴点关于的对称点是点.连接,,且交于点,与交于点,此时的值最小.∵,正方形的边长为8,∴,.由,知.又∵点与点关于对称,∴且平分.∴.∴.∴的最小值是1.【题目点拨】本题考查轴对称的应用和勾股定理的基本概念.解答本题的关键是读懂题意,知道根据正方形的性质得到DN+MN的最小值即为线段BM的长.24、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)【解题分析】
(1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;(2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;(3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.【题目详解】(1)∵点N的坐标为(2,0),CN⊥x轴,且,∴点C的坐标为(2,).∵点C在反比例函数的图象上,∴n=2×=1.(2)四边形ABCD为菱形,理由如下:当n=2时,.当x=2时,,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P的坐标为(2,).当y=时,,解得:,∴点B的坐标为,点D的坐标为,∴,∴BP=DP.又∵AP=CP,AC⊥BD,∴四边形ABCD为菱形.(3)∵四边形ABCD为正方形,∴AC=BD,且点P为线段AC及BD的中点.当x=2时,y1=n,y2=2n,∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,∴点P的坐标为.同理,点B的坐标为,点D的坐标为,.∵AC=BD,∴,∴,∴点A的坐标为,点B的坐标为.设直线AB的解析式为y=kx+b(k≠0),将A,B代入y=kx+b,得:,解得:,∴直线AB的解析式为y=x+.当x=0时,y=x+,∴点E的坐标为(0,),∴当四边形ABCD为正方形时,OE的长度为.【题目点拨】本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.25、(1)见解析;(2)①∠BDE=60°;②−1.【解题分析】
(1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;(2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轨道有公共交通服务的条款制度
- 财务信息公开制度
- 2026湖南长沙市开福区青竹湖湘一健翎学校春季教师招聘8人备考考试试题附答案解析
- 2026中国科学院力学研究所高速流动失稳与混合科研团队招聘科研财务助理人员1人参考考试题库附答案解析
- 2026河北廊坊师范学院选聘26人备考考试题库附答案解析
- 六年级语文上册vj语文园地 含“口语交际”十三
- 2026年度上半年伊春汤旺县公安局公开招聘警务辅助人员20人参考考试题库附答案解析
- 2026甘肃金昌市机关事务管理局补招临聘驾驶员3人备考考试题库附答案解析
- 2026青海果洛州玛多县学前教育教师招聘12人备考考试题库附答案解析
- 2026年济宁梁山县事业单位公开招聘初级综合类岗位人员(34人)备考考试试题附答案解析
- GB/T 3487-2024乘用车轮辋规格系列
- CJT 313-2009 生活垃圾采样和分析方法
- 人工智能在塑料零件设计中的应用
- 《剧院魅影:25周年纪念演出》完整中英文对照剧本
- 蒋诗萌小品《谁杀死了周日》台词完整版
- tubeless胸科手术麻醉
- 物业保洁保安培训课件
- 人教版初中英语七至九年级单词汇总表(七年级至九年级全5册)
- 起重机械的安全围挡与隔离区域
- 水泥直塑施工方案
- 山东省安全员B证考试题库(推荐)
评论
0/150
提交评论