2024届江苏省句容市数学八年级第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届江苏省句容市数学八年级第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届江苏省句容市数学八年级第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届江苏省句容市数学八年级第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届江苏省句容市数学八年级第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省句容市数学八年级第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,222.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或83.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月5.以下方程中,一定是一元二次方程的是A. B.C. D.6.如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°7.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2 B.3 C.4 D.68.一次函数,当时,x的取值范围是A. B. C. D.9.下列三角形纸片,能沿直线剪一刀得到直角梯形的是()A. B. C. D.10.如图,、两处被池塘隔开,为了测量、两处的距离,在外选一点,连接、,并分别取线段、的中点、,测得,则的长为()A. B. C. D.11.若反比例函数的图象经过点(﹣1,2),则它的解析式是()A. B. C. D.12.下列各式从左到右,是因式分解的是().A.(y-1)(y+1)=-1 B.C.(x-2)(x-3)=(3-x)(2-x) D.二、填空题(每题4分,共24分)13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.14.如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.15.如图,在平面直角坐标系中,直线y=4x+4与x、y轴分别相交于点A、B,四边形ABCD是正方形,抛物线过C,D两点,且C为顶点,则a的值为_______.16.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.17.一次函数与轴的交点是__________.18.某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:面试笔试成绩评委1评委2评委392889086如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩_____.三、解答题(共78分)19.(8分)先化简,再求值:,其中a=+1.20.(8分)先化简再求值:,其中.21.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。已知点A在格点,请在给定的网格中按要求画出图形.(1)以为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点。(2)以为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点。22.(10分)如图,在▱ABCD中,CE平分∠BCD,且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠B=52°,求∠1的大小.23.(10分)为了让同学们了解自己的体育水平,八年级1班的体育老师对全班50名学生进行了一次体育模拟测试(得分均为整数).成绩满分为10分,1班的体育委员根据这次测试成绩制作了如下的统计图:(1)根据统计图所给的信息填写下表:平均数(分)中位数(分)众数(分)男生8女生88(2)若女生队测试成绩的方差为1.76,请计算男生队测试成绩的方差.并说明在这次体育测试中,哪个队的测试成绩更整齐些?24.(10分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.(1)如图,求证:矩形是正方形;(2)当线段与正方形的某条边的夹角是时,求的度数.25.(12分)如图,在正方形内任取一点,连接,在⊿外分别以为边作正方形和.⑴.按题意,在图中补全符合条件的图形;⑵.连接,求证:⊿≌⊿;⑶.在补全的图形中,求证:∥.26.如图,在平面直角坐标系中,的三个顶点分别是、、.(1)画出关于点成中心对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;(2)△和△关于某一点成中心对称,则对称中心的坐标为.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

根据众数和中位数的定义求解.【题目详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.

故选A.【题目点拨】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.2、D【解题分析】

因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【题目详解】当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.故选D.【题目点拨】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.3、B【解题分析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【题目详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.【题目点拨】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4、C【解题分析】

根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【题目详解】A、极差为:83-28=55,故本选项错误;

B、∵58出现的次数最多,是2次,

∴众数为:58,故本选项错误;

C、中位数为:(58+58)÷2=58,故本选项正确;

D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;

故选C.5、B【解题分析】

根据一元二次方程的定义依次判断即可.【题目详解】解:A、是二元一次方程,故选项A不符合题意;B、是一元二次方程,故选项B符合题意;C、m=﹣1时是一元一次方程,故选项C不符合题意;D、化简后为x+4=0,是一元一次方程,故选项D不符合题意;故选:B.【题目点拨】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.6、B【解题分析】

据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【题目详解】,,又,中,,旋转角的度数为.故选:.【题目点拨】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.7、B【解题分析】

想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题.【题目详解】连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=1,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=1,∴S阴=1.故选B.【题目点拨】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.8、D【解题分析】

根据一次函数,可得:,解得:,即可求解.【题目详解】因为,所以当时,则,解得,故选D.【题目点拨】本题主要考查一次函数与不等式的关系,解决本题的关键是要熟练掌握一次函数与不等式的关系.9、C【解题分析】

本题就是应用直角梯形的这个性质作答的,直角梯形:有一个角是直角的梯形叫直角梯形.由梯形的定义得到直角梯形必有两个直角.【题目详解】直角梯形应该有两个角为直角,C中图形已经有一直角,再沿一直角边剪另一直角边的平行线即可.如图:故选:C.【题目点拨】此题是考查了直角梯形的性质与三角形的内角和定理的应用,掌握直角梯形的性质是解本题的关键.10、C【解题分析】

根据题意直接利用三角形中位线定理,可求出.【题目详解】、是、的中点,是的中位线,,,.故选.【题目点拨】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.11、B【解题分析】

首先设出反比例函数解析式,再把(﹣1,2)代入解析式可得k的值,进而得到答案.【题目详解】解:设反比例函数解析式为y=,∵反比例函数的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,故选:B.【题目点拨】考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.12、D【解题分析】

解:A、是多项式乘法,不是因式分解,故本选项错误;B、结果不是积的形式,故本选项错误;C、不是对多项式变形,故本选项错误;D、运用完全平方公式分解x2-4x+4=(x-2)2,正确.故选D.二、填空题(每题4分,共24分)13、50(1﹣x)2=1.【解题分析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.14、2【解题分析】

根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.【题目详解】解:∵四边形AFCE是正方形,∴AE=EC,∠E=90°,△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,∴△ABF≌△ADE,∴正方形AFCE的面积=四边形ABCD的面积=18cm1.∴AE=CE==,∴AC=AE=2cm.故答案为:2.【题目点拨】本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.15、-1【解题分析】

如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,利用三角形全等,求出点C、点D和点F坐标即可解决问题.【题目详解】解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F.∵直线y=-1x+1与x轴、y轴分别交于A、B两点,∴点B(0,1),点A(1,0),△ABO≌△DAM

∵四边形ABCD是正方形,

∴AB=AD=DC=BC,∠BAD=90°,

∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,

∴∠ABO=∠DAM,

在△ABO和△DAM中,,∴△ABO≌△DAM,

∴AM=BO=1,DM=AO=1,

同理可以得到:CF=BN=AO=1,DF=CN=BO=1,

∴点F(5,5),C(1,5),D(5,1),把C(1,1),D(5,1)代入得:,解得:b=-9a-1,∵C为顶点,∴,即,解得:a=-1.故答案为-1.【题目点拨】本题考查二次函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.16、75°【解题分析】

连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.【题目详解】如图,连接BD,

∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°-∠BCE)=15°,∵∠BCM=∠BCD=45°,∴∠BMC=180°-(∠BCM+∠EBC)=120°∴∠AMB=180°-∠BMC=60°

∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°,∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.故答案为75〬【题目点拨】本题考核知识点:正方形性质,等边三角形.解题关键点:运用正方形性质,等边三角形性质求角的度数.17、【解题分析】

根据题目中的解析式,令y=0,求出相应的x的值,即可解答本题.【题目详解】解:解:∵,∴当y=0时,0=,得x=,∴一次函数的图象与x轴交点坐标是(,0),故答案为:(,0).【题目点拨】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.18、89.6分【解题分析】

将面试所有的成绩加起来再除以3即可得小王面试平均成绩,再根据加权平均数的含义和求法,求出小王的最终成绩即可.【题目详解】∵面试的平均成绩为=88(分),∴小王的最终成绩为=89.6(分),故答案为89.6分.【题目点拨】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.三、解答题(共78分)19、【解题分析】

原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【题目详解】原式==,当a=+1时,原式=.【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20、1-【解题分析】试题分析:首先将括号里面的分式进行通分,然后根据分式的除法计算法则将分式进行约分化简,最后将x的值代入化简后的式子进行计算得出答案.试题解析:原式,将x=代入得:原式=1-.21、见解析【解题分析】

(1)因为平行四边形为21,所以平行四边形的高可以是7,底边长为3,利用平行四边形的性质得出符合题意的答案;(2)因为平行四边形为20,所以平行四边形的高可以是4,底边长为5,直接利用菱形的性质得出符合题意的答案.【题目详解】解:(1)如图甲所示:平行四边形ABCD即为所求;(2)如图乙所示:菱形ABCD即为所求.【题目点拨】此题考查菱形、平行四边形的性质,正确掌握菱形、平行四边形的性质是解题关键.22、(1)见解析;(2)∠1=64°.【解题分析】

(1)(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠BCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)CE平分∠BCD得∠ECB=∠ECD,进而得到∠1=∠ECD,再由∠D=∠B=52°,运用三角形内角和,即可求解.【题目详解】解:(1)证明:∵四边形ABCD是平行四边形∴AB=CD∠B=∠DAD∥BC∴∠1=∠ECB∵AF∥CE∴∠AFB=∠ECB∴∠1=∠AFB∴△ABF≌△CDE(AAS)(2)∵CE平分∠BCD∴∠ECB=∠ECD∵∠1=∠ECB(已证)∴∠1=∠ECD∵∠B=52°∴∠D=∠B=52°∴∠1=∠ECD=【题目点拨】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.23、(1)8;8;8;(2)女生测试成绩更整齐些【解题分析】

(1)根据平均数、众数的定义求解即可;(2)先计算男生队测试成绩的方差,然后根据方差越小越整齐解答.【题目详解】(1)男生的平均数:(5×1+6×3+7×5+8×7+9×4+10×5)÷(1+3+5+7+4+5)=8分;男生的众数:∵8分出现的次数最多,∴众数是8分;女生的众数:∵8分出现的次数最多,∴众数是8分;(2)[(5-8)2×1+(6-8)2×3+(7-8)2×5+(8-8)2×7+(9-8)2×4+(10-8)2×5]÷25=2,∵1.76<2,∴女生测试成绩更整齐些.【题目点拨】本题考查了平均数、众数、标准差的求法,平均数是指在一组数据中所有数据之和再除以数据的个数.解题的关键是掌握加权平均数和方差公式.24、∠EFC=125°或145°.【解题分析】

(1)首先作EP⊥CD于P,EQ⊥BC于Q,由∠DCA=∠BCA,得出EQ=EP,再由∠QEF+∠FEC=45°,得出∠PED+∠FEC=45°,进而得出∠QEF=∠PED,即可判定Rt△EQF≌Rt△EPD,得出EF=ED,即可得证;(2)分类讨论:①当DE与AD的夹角为35°时,∠EFC=125°;②当DE与DC的夹角为35°时,∠EFC=145°,即可得解.【题目详解】(1)作EP⊥CD于P,EQ⊥BC于Q,如图所示∵∠DCA=∠BCA∴EQ=EP,∵∠QEF+∠FEP=90°,∠PED+∠FEP=90°,∴∠QEF=∠PED在Rt△EQF和Rt△EPD中,∴Rt△EQF≌Rt△EPD∴EF=ED∴矩形DEFG是正方形;(2)①当DE与AD的夹角为35°时,∠DEP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论