广东省梅州市大埔县2024届数学八下期末经典模拟试题含解析_第1页
广东省梅州市大埔县2024届数学八下期末经典模拟试题含解析_第2页
广东省梅州市大埔县2024届数学八下期末经典模拟试题含解析_第3页
广东省梅州市大埔县2024届数学八下期末经典模拟试题含解析_第4页
广东省梅州市大埔县2024届数学八下期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省梅州市大埔县2024届数学八下期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列说法中错误的是()A.“买一张彩票中奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“投掷一枚骰子点数为8”是确定事件2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.33.如图,点在反比例函数的图象上,点在反比例函数的图象上,轴,连接,过点作轴于点,交于点,若,则的值为()A.﹣4 B.﹣6 C.﹣8 D.﹣94.用配方法解方程时,配方变形结果正确的是()A. B. C. D.5.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.6.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.7.下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x8.反比例函数y=-3x的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是(

A.b>c

B.b=c

C.b<c

D.不能确定9.下列各式中,不是最简二次根式的是()A. B. C. D.10.点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有()①AC=5②∠A+∠C=180°③AC⊥BD④AC=BDA.①②④ B.①②③ C.②③④ D.①③④12.在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③二、填空题(每题4分,共24分)13.函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.14.如果关于的不等式组无解,则的取值范围是_____.15.已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.16.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.17.如果正数m的平方根为x+1和x-3,则m的值是_____18.有一块田地的形状和尺寸如图,则它的面积为_________.三、解答题(共78分)19.(8分)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.20.(8分)已知直线经过点M(-2,1),求此直线与x轴,y轴的交点坐标.21.(8分)如图,E为正方形ABCD内一点,点F在CD边上,且∠BEF=90°,EF=2BE.点G为EF的中点,点H为DG的中点,连接EH并延长到点P,使得PH=EH,连接DP.(1)依题意补全图形;(2)求证:DP=BE;(3)连接EC,CP,猜想线段EC和CP的数量关系并证明.22.(10分)如图,在平面直角坐标系中,为坐标原点,直线与轴的正半轴交于点,与直线交于点,若点的横坐标为3,求直线与直线的解析式.23.(10分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?24.(10分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?25.(12分)反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)(1)求这两个函数解析式;(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.26.先化简,再求值:(1﹣),其中m=1.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

直接利用概率的意义以及事件的确定方法分别分析得出答案.【题目详解】A、“买一张彩票中奖”发生的概率是0,错误,符合题意;B、“软木塞沉入水底”发生的概率是0,正确,不合题意;C、“太阳东升西落”发生的概率是1,正确,不合题意;D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;故选:A.【题目点拨】此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.2、D【解题分析】

已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【题目详解】故选D.【题目点拨】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.3、B【解题分析】

过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOC是矩形,四边形OEBF是矩形,得出S矩形AFOC=2,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OC,即OE=3OC,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【题目详解】解:如图,过点作轴于,延长线段,交轴于,∵轴,∴轴,∴四边形是矩形,四边形是矩形,∴,,∴,∵点在函数的图象上,∴,同理可得,∵,∴,∴,∴,∴,即.故选:B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,矩形的判定和性质,平行线分线段成比例定理,作出辅助线构建矩形,运用反比例函数系数k的几何意义是解题的关键.4、C【解题分析】

根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.【题目详解】∵∴x2+6x=1,∴x2+6x+9=1+9,∴(x+3)2=10;故选:C.【题目点拨】本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.5、A【解题分析】

先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【题目详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选:A.【题目点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6、D【解题分析】【分析】分两种情况分析:当k>0或当k<0时.【题目详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【题目点拨】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.7、C【解题分析】试题分析:一次函数y=kx+b的图象有两种情况:①当k>0时,函数y=kx+b的值随x的值增大而增大;②当k<0时,函数y=kx+b的的值随x的值增大而减小.∵函数y随x的增大而减少,∴k<0,符合条件的只有选项C,故答案选C.考点:一次函数y=kx+b的图象及性质.8、A【解题分析】

根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.【题目详解】解:∵k=-3<0,则y随x的增大而增大.又∵0>a>a-1,则b>c.故选A.【题目点拨】本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:(1)反比例函数y=kx(k≠(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.9、D【解题分析】

根据最简二次根式的条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【题目详解】解:A、是最简二次根式,不符合题意;B、是最简二次根式,不符合题意;C、是最简二次根式,不符合题意;D、不是最简二次根式,符合题意;故选:D.【题目点拨】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.10、D【解题分析】

根据各象限内点的坐标特征解答.【题目详解】解:点P(2,-3)在第四象限.故选:D.【题目点拨】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、A【解题分析】

当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【题目详解】根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,∴∠BAD+∠BCD=180°,AC==5,①正确,②正确,④正确;③不正确;故选A.【题目点拨】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.12、A【解题分析】

连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【题目详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,

∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.

∴∠ADE+∠EDC=90°,

∵∠EDC+∠FDC=∠GDH=90°,

∴∠ADE=∠CDF.

在△ADE和△CDF中,∴△ADE≌△CDF(ASA),

∴AE=CF,DE=DF,S△ADE=S△CDF.

∵AC=BC,

∴AC-AE=BC-CF,

∴CE=BF.

∵AC=AE+CE,

∴AC=AE+BF.

∵DE=DF,∠GDH=90°,

∴△DEF始终为等腰直角三角形.

∵CE1+CF1=EF1,

∴AE1+BF1=EF1.

∵S四边形CEDF=S△EDC+S△EDF,

∴S四边形CEDF=S△EDC+S△ADE=S△ABC.

∴正确的有①②③④.

故选A.【题目点拨】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.二、填空题(每题4分,共24分)13、y=2x-6【解题分析】

根据“左加右减,上加下减”的原则进行解答即可.【题目详解】解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.故答案为y=2x-6.【题目点拨】本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.14、a≤1.【解题分析】

分别求解两个不等式,当不等式“大大小小”时不等式组无解,【题目详解】解:∴不等式组的解集是∵不等式组无解,即,解得:【题目点拨】本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.15、1【解题分析】

由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.【题目详解】一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.

故答案为1.【题目点拨】本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.16、【解题分析】

设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【题目详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【题目点拨】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.17、4【解题分析】

根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.【题目详解】由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.所以m的值是4.【题目点拨】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18、1.【解题分析】

先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.【题目详解】连接AC,∵△ACD是直角三角形,∴,因为102+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×24×10-×6×8=120-24=1,故答案为:1.【题目点拨】本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)四边形MENF是菱形;理由见解析.【解题分析】

(1)由矩形的性质得出AB=DC,∠A=∠D,再由M是AD的中点,根据SAS即可证明△ABM≌△DCM;(2)先由(1)得出BM=CM,再由已知条件证出ME=MF,EN、FN是△BCM的中位线,即可证出EN=FN=ME=MF,得出四边形MENF是菱形.【题目详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MENF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形.点睛:本题考查了矩形的性质、全等三角形的判定与性质、三角形的中位线、菱形的判定;熟练掌握矩形的性质,菱形的判定方法,证明三角形全等是解决问题的关键.20、(0,-3)【解题分析】

将点M(-2,1)代入直线y=kx-3,求出k的值,然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点.【题目详解】∵y=kx-3过(-2,1),∴1=-2k-3,∴k=-2,∴y=-2x-3,∵令y=0时,x=,∴直线与x轴交点为(,0),∵令x=0时,y=-3,∴直线与y轴交点为(0,-3).【题目点拨】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,熟知函数与y轴的交点的横坐标为0,函数与x轴的交点的纵坐标为0是关键.21、(1)详见解析;(2)详见解析;(3)详见解析【解题分析】

(1)根据题意可以画出完整的图形;

(2)由EF=2BE,点G为EF的中点可知,要证明DP=BE,只要证明DP=EG即可,要证明DP=EG,只要证明ΔPDH≌ΔEGH即可,然后根据题目中的条件和全等三角形的判定即可证明结论成立;

(3)首先写出线段EC和CP的数量关系,然后利用全等三角形的判定和性质即可证明结论成立.【题目详解】解:(1)依题意补全图形如下:(2)∵点H为线段DG的中点,∴DH=GH.在ΔPDH和ΔEGH中,∵EH=PH,∠EHG=∠PHD,∴ΔPDH≌ΔEGH(SAS).∴DP=EG.∵G为EF的中点,∴EF=2EG.∵EF=2EB,∴BE=EG=DP.(3)猜想:EC=CP.由(2)可知ΔPDH≌ΔEGH.∴∠HEG=∠HPD.∴DP∥EF.∴∠PDC=∠DFE.又∵∠BEF=∠BCD=90°,∴∠EBC+∠EFC=180°.又∵∠DFE+∠EFC=180°,∴∠EBC=∠DFE=∠PDC.∵BC=DC,DP=BE,∴ΔEBC≌ΔPDC(SAS).∴EC=PC.故答案为(1)详见解析;(2)详见解析;(3)详见解析.【题目点拨】本题考查全等三角形的判定与性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22、直线l1的解析式为y=﹣x+6,直线l2的解析式为y=x.【解题分析】

把A(6,0)代入y=﹣x+b求得直线l1的解析式,把B点的横坐标代入y=﹣x+6得到B点的坐标,再把B点的坐标代入y=kx,即可得到结论.【题目详解】∵直线l1:y=﹣x+b与x轴的正半轴交于点A(6,0),∴0=﹣6+b,∴b=6,∴直线l1的解析式为y=﹣x+6;∵B点的横坐标为3,∴当x=3时,y=3,∴B(3,3),把B(3,3)代入y=kx得:k=1,∴直线l2的解析式为y=x.【题目点拨】本题考查了两条直线相交或平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.23、(1)日销售量最大为120千克;(2);(3)第6天比第13天销售金额大.【解题分析】

(1)观察图(1),可直接得出第12天时,日销售量最大120千克;(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;(3)观察图(1),根据(2)求出的函数解析式,分别求出第6天和第13天的日销售量,再根据图(2),求出第6天和第13天的销售单价,求出第6天和第13天的销售金额,最后比较即可.【题目详解】(1)由图(1)可知,x=12时,日销售量最大,为120千克;(2)0≤x<12时,设y=k1x,∵函数图象经过点(12,120),∴12k1=120,解得k1=10,∴y=10x,12≤x≤20时,设y=k2x+b1,∵函数图象经过点(12,120),(20,0),∴,解得,∴y=﹣15x+300,综上所述,y与x的函数关系式为;(3)5≤x≤15时,设z=k3x+b2,∵函数图象经过点(5,32),(15,12),∴,解得,∴z=﹣2x+42,x=6时,y=60,z=﹣2×6+42=30,∴销售金额=60×30=1800元,x=13时,y=﹣15×13+300=105,z=﹣2×13+42=16,∴销售金额=105×16=1680元,∵1800>1680,∴第6天比第13天销售金额大.【题目点拨】本题考查了一次函数的应用,涉及了待定系数法,二元一次方程组的解法,弄清题意,准确识图是解题的关键.应注意自变量的取值范围.24、(1)10,1;(2)y=1x﹣1;(3)登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.【解题分析】

根据函数图象由甲走的路程除以时间就可以求出甲的速度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论