2024届江苏省南京市建邺区金陵河西区八年级数学第二学期期末达标测试试题含解析_第1页
2024届江苏省南京市建邺区金陵河西区八年级数学第二学期期末达标测试试题含解析_第2页
2024届江苏省南京市建邺区金陵河西区八年级数学第二学期期末达标测试试题含解析_第3页
2024届江苏省南京市建邺区金陵河西区八年级数学第二学期期末达标测试试题含解析_第4页
2024届江苏省南京市建邺区金陵河西区八年级数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市建邺区金陵河西区八年级数学第二学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB得到线段A’B’(点A与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为(

)A.(4,2) B.(5,2) C.(6,2) D.(5,3)2.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩.根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大D.乙队员成绩的方差比甲队员的大3.一次统计八(2)班若干名学生每分跳绳次数的频数分布直方图的次数(结果精确到个位)是()A.数据不全无法计算 B.103C.104 D.1054.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,15.满足下列条件的四边形不是正方形的是()A.对角线相互垂直的矩形 B.对角线相等的菱形C.对角线相互垂直且相等的四边形 D.对角线垂直且相等的平行四边形6.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1∶2∶3B.三内角的度数之比为3∶4∶5C.三边长之比为3∶4∶5D.三边长的平方之比为1∶2∶37.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1 B.2 C.3 D.48.在□ABCD中,∠A:∠B=7:2,则∠C等于()A.40° B.80° C.120° D.140°9.我国在近几年奥运会上所获金牌数(单位:枚)统计如下:届数23届24届25届26届27届28届金牌这组数据的众数与中位数分别是()A.32、32 B.32、16 C.16、16 D.16、3210.下列事件为必然事件的是()A.抛掷一枚硬币,落地后正面朝上B.篮球运动员投篮,投进篮筐;C.自然状态下水从高处流向低处;D.打开电视机,正在播放新闻.二、填空题(每小题3分,共24分)11.如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.12.已知双曲线经过点(-1,2),那么k的值等于_______.13.小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.14.如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.16.在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为_____.17.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.18.分解因式:x2-2x+1=__________.三、解答题(共66分)19.(10分)如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:DE=AF;(2)若AB=4,BG=3,求AF的长;(3)如图2,连接DF、CE,判断线段DF与CE的位置关系并证明.20.(6分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?21.(6分)某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:()由甲队单独完成这项工程,恰好如期完工;()由乙队单独完成这项工程,比规定工期多6天;()由甲乙两队后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为天,依题意列出方程:.(1)请将()中被墨水污染的部分补充出来:________;(2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.22.(8分)如图,在四边形ABCD中,AB∥CD,AC、BD相交于点O,且O是BD的中点.求证:四边形ABCD是平行四边形.23.(8分)如图,四边形中,,,.(1)求证:;(2)若,,,分别是,,,的中点,求证:线段与线段互相平分.24.(8分)一次函数分别交x轴、y轴于点A、B,画图并求线段AB的长.25.(10分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.26.(10分)如图,在中,AD是BC边上的中线,E是AD的中点,延长BE到F,使,连接AF、CF、DF.求证:;若,试判断四边形ADCF的形状,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题解析:根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选B.2、B【解题分析】

根据平均数的公式:平均数=所有数之和再除以数的个数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可;中位数就是最中间的数或最中间两个数的平均数.【题目详解】解:(1)甲队员10次射击的成绩分别为6,7、7,7,1,1,9,9,9,10;

甲10次射击成绩的平均数=(6+3×7+2×1+3×9+10)÷10=1,

方差=[(6-1)2+3×(7-1)2+2×(1-1)3+3×(9-1)2+(10-1)2]=1.4;中位数:1.(2)乙队员9次射击的成绩分别为6,7,7,1,1,1,9,9,10;

乙9次射击成绩的平均数=(6+2×7+3×1+2×9+10)÷9=1,

方差=[(6-1)2+2×(7-1)2+3×(1-1)3+2×(9-1)2+(10-1)2]≈1.3;中位数:1.两者平均数和中位数相等,甲的方差比乙大.故选B.【题目点拨】本题考查平均数、方差的定义和公式;熟练掌握平均数和方差的计算是解决问题的关键.3、C【解题分析】

根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);然后取每一小组中间的数值近似地作为该组内每位学生的每分钟跳绳次数,再用加权平均数求解即可.【题目详解】解:根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);所以这若干名学生每分钟跳绳次数的平均数=(62×2+87×4+112×6+137×2)÷15≈103.67≈104,故选C.【题目点拨】本题考查学生读取频数分布直方图的能力和利用统计图获取信息的能力.对此类问题,必须认真观察题目所给的统计图并认真的思考分析,才能作出正确的判断,从而解决问题.4、D【解题分析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.5、C【解题分析】A.对角线相互垂直的矩形是正方形,故本项正确;B.对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D.对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.6、B【解题分析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;

B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;

C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;

D、因为1+2=3,所以是直角三角形.

故选B.7、B【解题分析】

根据正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=4,求4的算术平方根即可得到结论.【题目详解】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=102﹣4×24=4,∴正方形EFGH的边长=2,故选:B.【题目点拨】本题考查了正方形的面积,三角形的面积,正确的识别图形是解题的关键.8、A【解题分析】

根据平行四边形的性质得到AD∥BC,AB∥CD,由平行线的性质得到∠A,再由平行线的性质得到∠C=40°.【题目详解】根据题意作图如下:因为BCD是平行四边形,所以AD∥BC,AB∥CD;因为AD∥BC,所以∠A是∠B的同的同旁内角,即∠A+∠B=180°;又因为∠A:∠B=7:2,所以可得∠A==140°;又因为AB∥CD,所以∠C是∠A的同旁内角,所以∠C=180°-140°=40°.故选择A.【题目点拨】本题考查平行四边形的性质和平行线的性质,解题的关键是掌握平行四边形的性质和平行线的性质.9、C【解题分析】数据1出现了两次最多为众数,1处在第5位和第6位,它们的平均数为1.

所以这组数据的中位数是1,众数是1,

故选C.【题目点拨】确定一组数据的中位数和众数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、C【解题分析】

根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;

B、篮球运动员投篮,投进篮筺是随机事件;

C、自然状态下水从高处流向低处是必然事件;

D、打开电视机,正在播放新闻是随机事件;

故选:C.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、6【解题分析】

作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.【题目详解】解:作AH⊥BC于H点,∵四边形DEFG为矩形,

∴△ADG∽△ABC,△BDE∽△BAH,∵的面积为36,边cm∴AH=6∵EF=2DE,即DG=2DE解得:DE=3∴DG=6故答案为:6【题目点拨】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.12、-1【解题分析】

分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.13、20【解题分析】

根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.【题目详解】解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,

所以A、B两地距离为:4×5=20(千米).

故答案为:20【题目点拨】本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.14、60【解题分析】

先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.【题目详解】解:∵∠BAC=120°,AB=AC,∴∠C===30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为60°.【题目点拨】本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.15、1【解题分析】

根据“频数:组距=2且组距为3”可得答案.【题目详解】根据题意知,该小组的频数为2×3=1.故答案为:1.【题目点拨】本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.16、1【解题分析】

作点D关于BC的对称点D',连接AD',PD',依据AP+DP=AP+PD'≥AD',即可得到AP+DP的最小值等于AD'的长,利用勾股定理求得AD'=1,即可得到AP+DP的最小值为1.【题目详解】解:如图,作点D关于BC的对称点D',连接AD',PD',则DD'=2DC=2AB=4,PD=PD',∵AP+DP=AP+PD'≥AD',∴AP+DP的最小值等于AD'的长,∵Rt△ADD'中,AD'===1,∴AP+DP的最小值为1,故答案为:1.【题目点拨】本题考查的是最短线路问题及矩形的性质,熟知两点之间线段最短的知识是解答此题的关键.17、1【解题分析】

先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【题目详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.【题目点拨】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.18、(x-1)1.【解题分析】

由完全平方公式可得:故答案为.【题目点拨】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.三、解答题(共66分)19、(1)证明见解析;(2);(3)DF⊥CE;证明见解析.【解题分析】

(1)先判断出∠AED=∠BFA=90°,再判断出∠BAF=∠ADE,进而利用“角角边”证明△AFB和△DEA全等,即可得出结论;(2)先求出AG,再判断出△ABF∽△AGB,得出比例式即可得出结论;(3)先判断出AD=CD,然后利用“边角边”证明△FAD和△EDC全等,得出∠ADF=∠DCE,即可得出结论.【题目详解】解:(1)∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠BFA=90°,∵四边形ABCD是正方形,∴AB=AD且∠BAD=∠ADC=90°,∴∠BAF+∠EAD=90°,∵∠EAD+∠ADE=90°,∴∠BAF=∠ADE,在△AFB和△DEA中,,∴△AFB≌△DEA(AAS),∴AF=DE;(2)在Rt△ABG中,AB=4,BG=3,根据勾股定理得,AG=5,∵BF⊥AG,∴∠AFB=∠ABG=90°,∵∠BAF=∠GAB,∴△ABF∽△AGB,∴,即,∴AF=;(3)DF⊥CE,理由如下:∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,∴∠FAD=∠EDC,∵△AFB≌△DEA,∴AF=DE,又∵四边形ABCD是正方形,∴AD=CD,在△FAD和△EDC中,,∴△FAD≌△EDC(SAS),∴∠ADF=∠DCE,∵∠ADF+∠CDF=∠ADC=90°,∴∠DCE+∠CDF=90°,∴DF⊥CE.【题目点拨】本题是四边形综合题,涉及了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相关的性质与定理是解本题的关键.20、(1)15元;(2)1支.【解题分析】试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10解得:x=15,经检验,x=15是方程的解.答:第一批文具盒的进价是15元/只.(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.答:至少销售1只后开始打折.点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.21、(1)合作5天;(2)方案(C)既能如期完工,又节省工程款.【解题分析】

(1)设规定的工期为x天,根据题意得出的方程为:,可知被墨水污染的部分为:若甲、乙两队合作5天;(2)根据题意先求得规定的天数,然后算出三种方案的价钱之后,再根据题意选择既按期完工又节省工程款的方案.【题目详解】(1)根据题意及所列的方程可知被墨水污染的部分为:甲、乙两队合作5天.故答案是:甲、乙两队合作5天;(2)设规定的工期为x天,根据题意列出方程:,解得:x=1.经检验:x=1是原分式方程的解.这三种施工方案需要的工程款为:(A)2×1=60(万元);(B)1.5×(1+6)=54(万元),但不能如期完工;(C)2×5+1.5×1=55(万元).综上所述,(C)方案是既按期完工又节省工程款的方案:即由乙队单独完成这项工程.【题目点拨】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系;②列出方程;③解出分式方程;④检验;⑤作答.注意:分式方程的解必须检验.22、详见解析.【解题分析】

利用全等三角形的性质证明AB=CD即可解决问题.【题目详解】证明:∵AB∥CD,∴∠ABO=∠CDO,O是BD的中点,∠AOB=∠COD,OB=OD,∴△AOB≌△COD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形.【题目点拨】本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.23、(1)见解析;(2)见解析【解题分析】

(1)过点D作DM∥AC交BC的延长线于点M,由平行四边形的性质易得AC=DM=DB,∠DBC=∠M=∠ACB,由全等三角形判定定理及性质得出结论;

(2)连接EH,FH,FG,EG,E,F,G,H分别是AD,BC,DB,AC的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得□HFGE为菱形,易得EF与GH互相垂直平分.【题目详解】解:(1)证明:(1)过点D作DM∥AC交BC的延长线于点M,如图1,

∵AD∥CB,

∴四边形ADMC为平行四边形,

∴AC=DM=DB,∠DBC=∠M=∠ACB,

在△ACB和△DBC中,,∴△ACB≌△DBC(SAS),

∴AB=DC;(2)连接EH,FH,FG,EG,如图2,

∵E,F,G,H分别是AD,BC,DB,AC的中点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论