版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铜陵市2024届数学八年级第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是()A.①②③ B.②③ C.③④ D.②④2.已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为S2甲,S2乙,则S2甲与S2乙大小关系为()A.S2甲>S2乙 B.S2甲=S2乙 C.S2甲<S2乙 D.不能确定3.如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为()A.5 B.4 C.3 D.24.在平行四边形ABCD中,若∠A=50A.∠B=130∘ B.∠B+∠C=180∘5.约分的结果是()A. B. C. D.6.下列各曲线中不能表示y是x函数的是()A. B. C. D.7.如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长()A.逐渐增大 B.逐渐变小C.不变 D.先增大,后变小8.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E、F分别为BC、CD的中点,AP⊥EF分别交BD、EF于O、P两点,M、N分别为BO、DO的中点,连接MP、NF,沿图中实线剪开即可得到一副七巧板.若AB=1,则四边形BMPE的面积是()A. B. C. D.9.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.610.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF11.不等式的解集为()A. B. C. D.12.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、、,若S=2,则+=().A.4 B.6 C.8 D.不能确定二、填空题(每题4分,共24分)13.为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.14.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn=_____.(用含n的式子表示)15.如图所示,在正方形中,延长到点,若,则四边形周长为__________.16.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.17.因式分解:2a2﹣8=.18.如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.三、解答题(共78分)19.(8分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.(1)求的值及的面积;(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.20.(8分)如图①,在平面直角坐标系中,点,的坐标分别为,,点在直线上,将沿射线方向平移,使点与点重合,得到(点、分别与点、对应),线段与轴交于点,线段,分别与直线交于点,.(1)求点的坐标;(2)如图②,连接,四边形的面积为__________(直接填空);(3)过点的直线与直线交于点,当时,请直接写出点的坐标.21.(8分)某商品原来单价48元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为27元,求平均每次降价的百分数.22.(10分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?23.(10分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,又分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.求证:(1)点D在AB的中垂线上.(2)当CD=2时,求△ABC的面积.24.(10分)如图,抛物线与轴交于,(在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.25.(12分)如图(1),在矩形中,分别是的中点,作射线,连接.(1)请直接写出线段与的数量关系;(2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;(3)写出与的数量关系,并证明你的结论.26.如图,在平面直角坐标系中,正方形两顶点为,,点D的坐标为,在上取点E,使得,连接,分别交,于M,N两点.(1)求证:;(2)求点E的坐标和线段所在直线的解析式;(3)在M,N两点中任选一点求出它的坐标.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
根据矩形和菱形的判定定理进行判断.【题目详解】解:对角线互相垂直平分的四边形是菱形,①错误,④正确;两组对边平行,一组邻边相等的四边形是菱形,②错误;对角线相等的平行四边形是矩形,③正确;∴正确的是③④,故选:C.【题目点拨】本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.2、A【解题分析】
通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.【题目详解】甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,=[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,=[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈1.33,∵2.33>1.33∴>,故选:A.【题目点拨】本题主要考查方差的意义,掌握方差的计算公式,是解题的关键.3、D【解题分析】
根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.【题目详解】解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=AD=2,故选D.【题目点拨】本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.4、D【解题分析】
由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.【题目详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°而∠A=50°,∴∠C=∠A=50°,∠B=∠D=130°,∴D选项错误,故选D.【题目点拨】本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.5、C【解题分析】
由题意直接根据分式的基本性质进行约分即可得出答案.【题目详解】解:=.故选:C.【题目点拨】本题考查分式约分,熟练掌握分式的约分法则是解答此题的关键.6、D【解题分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【题目详解】显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.【题目点拨】本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.7、C【解题分析】
根据三角形的中位线的定理,首先表示EF的长度,再根据AR是定值,从而可得EF是定值.【题目详解】解:∵E、F分别是PA、PR的中点,∴EF=AR,∴EF的长不变,故选:C.【题目点拨】本题主要考查三角形的中位线的性质,关键在于表示变化的直线.8、B【解题分析】
根据三角形的中位线的性质得到EF∥BD,EF=BD,推出点P在AC上,得到PE=EF,得到四边形BMPE平行四边形,过M作MF⊥BC于F,根据平行四边形的面积公式即可得到结论.【题目详解】∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,∵四边形ABCD是正方形,且AB=BC=1,∴BD=,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE是平行四边形,∴BO=BD,∵M为BO的中点,∴BM=BD=,∵E为BC的中点,∴BE=BC=,过M作MF⊥BC于F,∴MF=BM=,∴四边形BMPE的面积=BE•MF=,故选B.【题目点拨】本题考查了七巧板,正方形的性质,平行四边形的判定和性质,三角形的中位线的性质,正确的识别图形是解题的关键.9、C【解题分析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.10、A【解题分析】
平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【题目详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF
∴Rt△ABC≌Rt△DEF
∴BC=EF,AC=DF
所以只有选项A是错误的,故选A.【题目点拨】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.11、B【解题分析】
先去括号,再移项,然后合并同类项,最后系数化为1,即可得出答案.【题目详解】解:6x+15>8x+66x-8x>6-15-2x>-9x<4.5因此答案选择B.【题目点拨】本题主要考查了一元一次不等式的解法:去分母,去括号,移项,合并同类项,系数化为1.12、C【解题分析】试题分析:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,可得出四边形PQCD与ABQP都为平行四边形,所以△PDC≌△CQP,△ABP≌△QPB,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF∥BC,EF=BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,所以=+=8.故选C.考点:平行四边形的性质;三角形中位线定理.二、填空题(每题4分,共24分)13、173.1.【解题分析】
根据加权平均数的定义求解可得.【题目详解】解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)=(116+346+348+121)÷10=1731÷10=173.1(cm)答:该篮球队队员平均身高是173.1cm.故答案为:173.1.【题目点拨】本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.14、:()n.【解题分析】
由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴S1=××()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴S2=××()2=()2;依此类推,Sn=()n.故答案为()n.“点睛”此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.15、【解题分析】
由正方形的性质可知,在中,由勾股定理可得CE长,在中,根据勾股定理得DE长,再由求周长即可.【题目详解】解:如图,连接DE,四边形ABCD为正方形在中,根据勾股定理得,在中,根据勾股定理得所以四边形周长为,故答案为:.【题目点拨】本题主要考查了勾股定理的应用,灵活的应用勾股定理求线段长是解题的关键.16、1【解题分析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【题目详解】解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,故答案为:1.【题目点拨】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.17、2(a+2)(a-2).【解题分析】
2a2-8=2(a2-4)=2(a+2)(a-2).故答案为2(a+2)(a-2)【题目点拨】考点:因式分解.18、【解题分析】
如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【题目详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.【题目点拨】本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.三、解答题(共78分)19、(1)K=-,的面积=3;(2)(2,0)或(2-)或C3(-2,0);(3)(4,-3)或(-4,9).【解题分析】
①将代入直线可得K=-,的面积=OB·OA==3.②如详解图,分类讨论c1,c2,求坐标.③如详解图,分类讨论p1,p2,求坐标.【题目详解】(1)将代入直线可得K=-,点B坐标为(3,0),的面积=OB·OA·=2·3·=3.②已知△ABC为等腰三角形,则AB=AC.可求出AB长为,以A为圆心,AB为半径画弧,与x轴交点有2个,易得C点坐标为C1(2,0)或C2(2-).以B为圆心,BA为半径画弧与x轴交点有一个,坐标为C3(-2,0)③设P点坐标为(x,)∵S△BAM=,∴P点在线段AB外.若P在线段BA延长线上时,S△PBM=S△BAM+S△PAM===3,x=4.所以P坐标为(4,-3),若P在线段AB延长线上,S△PBM=S△PAM-S△BAM=﹣若﹣=3,x=-4,则P点为(-4,9).【题目点拨】本题主要考察对称与函数方程的综合运用,能够根据图像求相关数据与方程是解题关键.20、(1)C(-1,6);(2)24;(3)点N的坐标为(,)或(,);【解题分析】
(1)先求出点E的坐标,根据平移得到OA=CE=4,即可得到点C的坐标;(2)根据图象平移得到四边形的面积等于的面积,根据面积公式计算即可得到答案;(3)根据直线特点求出,tan∠NCE=tan∠POB=,再分两种情况:点N在CE的上方或下方时,分别求出直线CN的解析式得到点N的坐标即可.【题目详解】(1)∵点在直线上,∴m=6,∴E(3,6),由平移得CE=OA=4,∴点C的坐标是(-1,6);(2)由平移得到四边形的面积等于的面积,∴,故答案为:24;(3)由直线y=2x得到:tan∠POB=,当时,tan∠NCE=tan∠POB=,①当点N在CE上方时,直线CE的表达式为:,低昂点C的坐标代入上式并解得:b=,∴直线CN的表达式是y=x+,将上式与y=2x联立并解得:x=,y=,∴N(,);②当点N在CE下方时,直线CE的表达式为:y=-x+,同理可得:点N(,);综上,点N的坐标为(,)或(,).【题目点拨】此题考查函数图象上的点坐标,平行四边形的面积公式,平移的性质,求函数解析式,根据解析式求角的三角函数值,综合掌握各知识点是解题的关键.21、平均每次降价的百分数为25%.【解题分析】
设平均每次降价的百分率为x,那么这种药品经过一次降价后的价格为48(1-x)元,经过两次降价后的价格为48(1-x)元,而此时药品价格是27元,根据这个等量关系可以列出方程.【题目详解】设平均每次降价的百分数为x,依题意得:解得:答:平均每次降价的百分数为25%。【题目点拨】此题考查一元二次方程的应用,解题关键在于根据题意列出方程.22、(1)y1=x+2,y2=x+20(2)见解析【解题分析】
(1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l1的函数解析式.同理可以得出l2的函数解析式.(2)由图像可知l1、l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.【题目详解】(1)设l1的函数解析式为y1=k1x+b1,由图象知,l1过点(0,2)、(500,17),可得方程组,解得,故,l1的函数关系式为y1=x+2;设l2的函数解析式为y2=k2x+b2,由图象知,l2过点(0,20)、(500,26),可得方程组,解得,y2=x+20;(2)由题意得,x+2=x+20,解得x=1000,故,①当照明时间为1000小时时,两种灯的费用相同;②当照明时间超过1000小时,使用节能灯省钱.③当照明时间在1000小时以内,使用白炽灯省钱.【题目点拨】本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.23、(1)见解析;(2)6【解题分析】
(1)根据作图可知AD是∠CAB平分线,然后由等角对等边和线段垂直平分线的性质可得结论;(2)根据含30度角的直角三角形的性质求出AD和AC,进而求出BC的长即可解决问题.【题目详解】解:(1)根据作图可知AD是∠CAB平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠DAC=∠B=30°,∴DA=DB,∴点D在AB的中垂线上;(2)∵∠DAC=30°,CD=2,∴AD=2CD=4,∴,BD=AD=4,∴BC=CD+BD=6,∴.【题目点拨】本题考查了尺规作角平分线、等角对等边、线段垂直平分线的性质、含30度角的直角三角形的性质、勾股定理以及三角形的面积计算,灵活运用各性质进行推理计算是解题的关键.24、(1)(2),,,【解题分析】
(1)根据题意求得点、、、的坐标,进而求得直线和直线解析式.过点作轴垂线交于点,设点横坐标为,即能用表示、的坐标进而表示的长.由得到关于的二次函数,即求得为何值时面积最大,求得此时点坐标.把点向上平移的长,易证四边形是平行四边形,故有.在直线的上方以为斜边作等腰,则有.所以,其中的长为定值,易得当点、、在同一直线上时,线段和的值最小.又点是动点,,由垂线段最短可知过点作的垂线段时,最短.求直线、解析式,联立方程组即求得点坐标,进而求得的长.(2)先求得,,的坐标,可得是等腰直角三角形,当绕逆时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,,,即可求得的坐标,当绕顺时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,即可求得的坐标.【题目详解】解:(1)如图1,过点作轴于点,交于点,在上截取,连接,以为斜边在直线上方作等腰,过点作于点时,时,解得:,,直线解析式为抛物线上的点的横坐标为3,直线点在轴上,点在直线上,轴设抛物线上的点,当时,最大,,,四边形是平行四边形等腰中,为斜边,当点、、在同一直线上时,最小设直线解析式为解得:直线设直线解析式为解得:直线解得:,最小值为(2),,直线解析式为:,,,,,是等腰直角三角形,如图2,把绕顶点逆时针旋转,得到△,,,把△沿直线平移至△,连接,则直线解析式为,直线解析式为,显然以,,,为顶点的四边形为菱形,不可能为边,只能以、为邻边构成菱形,,,,如图3,把绕顶点顺时针旋转,得到△,,,把△沿直线平移至△,连接,,显然,,,,以,,,为顶点的四边形为菱形,只能为对角线,,.综上所述,点的坐标为:,,,.【题目点拨】本题考查了二次函数的图象和性质,二次函数最值应用,线段和最小值问题,待定系数法求函数解析式,平移、旋转等几何变换,等腰直角三角形性质,菱形性质等知识点,能熟练运用相关的性质定理是解题的关键.25、(1)MD=MC;(2)见解析;(3)∠BME=3∠AEM,证明见解析.【解题分析】
(1)由“SAS”可证△ADM≌△BCM,可得MD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丙烯酸树脂装置操作工岗前评优考核试卷含答案
- 钽铌加工材制取工岗前变更管理考核试卷含答案
- 松香浸提工岗前评审考核试卷含答案
- 土石方挖掘机司机班组考核竞赛考核试卷含答案
- 货运调度员操作安全测试考核试卷含答案
- 煤提质工岗前工艺规程考核试卷含答案
- 汽车美容装潢工班组安全知识考核试卷含答案
- 玻纤织布带工诚信模拟考核试卷含答案
- 电工合金金属粉末处理工岗前进阶考核试卷含答案
- 平板显示膜涂布工班组评比竞赛考核试卷含答案
- 2026年中国航空传媒有限责任公司市场化人才招聘备考题库有答案详解
- 2026年《全科》住院医师规范化培训结业理论考试题库及答案
- 2026北京大兴初二上学期期末语文试卷和答案
- 专题23 广东省深圳市高三一模语文试题(学生版)
- 重力式挡土墙施工安全措施
- 葫芦岛事业单位笔试真题2025年附答案
- 2026年公平竞争审查知识竞赛考试题库及答案(一)
- 置业顾问2025年度工作总结及2026年工作计划
- 金华市轨道交通控股集团有限公司招聘笔试题库2026
- 2025年国考科技部英文面试题库及答案
- 2026年AI辅助教学设计工具应用指南与课程优化技巧
评论
0/150
提交评论