2024届浙江省绍兴市迪荡新区数学八年级第二学期期末联考模拟试题含解析_第1页
2024届浙江省绍兴市迪荡新区数学八年级第二学期期末联考模拟试题含解析_第2页
2024届浙江省绍兴市迪荡新区数学八年级第二学期期末联考模拟试题含解析_第3页
2024届浙江省绍兴市迪荡新区数学八年级第二学期期末联考模拟试题含解析_第4页
2024届浙江省绍兴市迪荡新区数学八年级第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省绍兴市迪荡新区数学八年级第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点EA.点C处 B.点D处 C.点B处 D.点A处2.在□ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为().A.8cm B.10cm C.11cm D.12cm3.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点 C.C点 D.D点4.下列说法正确的是()A.长度相等的两个向量叫做相等向量;B.只有方向相同的两个向量叫做平行向量;C.当两个向量不相等时,这两个有向线段的终点一定不相同;D.减去一个向量相当于加上这个向量的相反向量.5.如图,已知直线11:y=﹣x+4与直线l2:y=3x+b相交于点P,点P的横坐标是2,则不等式﹣x+4≤3x+b的解集是()A.x<2 B.x>2 C.x≤2 D.x≥26.如图,当y1>y2时,x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<27.四边形的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BDC.AB=BC D.AD=BC8.如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为()A.50° B.60° C.70° D.80°9.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.菱形C.等腰直角三角形 D.平行四边形10.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量四边形其中的三个角是否都为直角11.如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是()A. B. C.4 D.312.如图,正方形的边长为3,点在正方形.内若四边形恰是菱形,连结,且,则菱形的边长为(

).A. B. C.2 D.二、填空题(每题4分,共24分)13.若分式方程无解,则__________.14.如图,已知AD是△ABC的中线,,,那么_________;15.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)16.若方程的两根为,,则________.17.若点在反比例函数的图像上,则______.18.如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为____________________.三、解答题(共78分)19.(8分)在平面直角坐标系中,三个顶点的坐标分别是,,.(1)将绕点旋转,请画出旋转后对应的;(2)将沿着某个方向平移一定的距离后得到,已知点的对应点的坐标为,请画出平移后的;(3)若与关于某一点中心对称,则对称中心的坐标为_____.20.(8分)某市联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A,B两种套餐收费一样?(3)什么情况下A套餐更省钱?21.(8分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.22.(10分)(1)分解因式:a(a﹣b)﹣b(a﹣b);(2)已知x+2y=4,求3x2+12xy+12y2的值.23.(10分)如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。(1)求A,B两点的坐标;(2)当ΔABC的面积为6时,求点C的坐标;(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。24.(10分)(1)发现规律:特例1:===;特例2:===;特例3:=4;特例4:______(填写一个符合上述运算特征的例子);(2)归纳猜想:如果n为正整数,用含n的式子表示上述的运算规律为:______;(3)证明猜想:(4)应用规律:①化简:×=______;②若=19,(m,n均为正整数),则m+n的值为______.25.(12分)如图①,在正方形中,点,分别在、上,且.(1)试探索线段、的关系,写出你的结论并说明理由;(2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.26.计算:(1)÷-×+;(2)(-1)101+(π-3)0+-.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.详解:当E在AB上运动时,△BCE的面积不断增大;当E在AD上运动时,BC一定,高为AB不变,此时面积不变;当E在DC上运动时,△BCE的面积不断减小.∴当x=7时,点E应运动到高不再变化时,即点D处.故选B.点睛:本题考查动点问题的函数图象问题,有一定难度,注意要仔细分析.关键是根据所给函数图象和点的运动轨迹判断出x=3到7时点E所在的位置.2、C【解题分析】

由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=11,继而可得△CDE的周长等于AD+CD.【题目详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD的周长22厘米,∴AD+CD=11,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11cm.

故选:C.【题目点拨】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.3、B【解题分析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【题目点拨】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.4、D【解题分析】【分析】相等向量:长度相等且方向相同的两个向量叫做相等向量;平行向量(也叫共线向量):方向相同或相反的非零向量;平行向量包含相等向量的情况.即相等向量一定是平行向量,但是平行向量不一定是相等向量;长度相等且方向相反的两个向量.根据相关定义进行判断.【题目详解】长度相等且方向相同的两个向量叫做相等向量,故选项A错误;方向相同或相反的非零向量叫做平行向量,故选项B错误;当两个向量不相等时,这两个有向线段的终点可能相同,故选项C错误;减去一个向量相当于加上这个向量的相反向量,故选项D正确.故选:D【题目点拨】本题考核知识点:向量.解题关键点:理解向量的相关定义.5、D【解题分析】

利用函数图象,写出直线l1不在直线l1上方所对应的自变量的范围即可.【题目详解】解:如图:当x≥1时,﹣x+4≤3x+b,所以不等式﹣x+4≤3x+b的解集为x≥1.故选:D.【题目点拨】此题考查不等式与一次函数的关系,数形结合即可求解.6、C【解题分析】分析:根据图像即可解答.详解:观察图像可知:当x<1时,y1=kx+b在y2=mx+n的上方,即y1>y2..故选C.点睛:本题考查一次函数的图像问题,主要是通过观察当x在哪个范围内时对应的函数值较大.7、B【解题分析】

四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理可得,只需添加条件是对角线相等.【题目详解】可添加AC=BD,理由如下:

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,

∴四边形ABCD是矩形.

故选:B.【题目点拨】考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.8、B【解题分析】

由折叠的性质可得AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED【题目详解】解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,∴AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠∴∠ACD=30°,∴∠DAC=60°,且∠DAE=∠CAE∴∠DAE=∠CAE=30°,且∠D=90°∴∠AED=60°故选:B.【题目点拨】本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.9、B【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】A、等边三角形,是轴对称图形,不是中心对称图形,故此选项错误;B、菱形,是轴对称图形,也是中心对称图形,故此选项正确;C、等腰直角三角形,是轴对称图形,不是中心对称图形,故此选项错误;D、平行四边形,不是轴对称图形,是中心对称图形,故此选项错误.故选B.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【解题分析】

根据矩形的判定定理即可选出答案.【题目详解】解:A.对角线是否相互平分,能判定平行四边形,而不能判定矩形;B.两组对边是否分别相等,能判定平行四边形,而不能判定矩形;C.一组对角是否都为直角,不能判定形状;D.四边形其中的三个角是否都为直角,能判定矩形.故选D.【题目点拨】本题考查了矩形的判定定理.解题的关键是牢记这些定理.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.11、A【解题分析】

利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可【题目详解】如图,作DH⊥AC于H,∵∴5(x-2)=3x∴x=5经检验:x=5是分式方程的解∵AC长是分式方程的解∴AC=5∵∠B=90°∴DB⊥AB,DH⊥AC∵AD平分∠BAC,∴DH=DB=S=故选A【题目点拨】此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线12、D【解题分析】

过点F作FM⊥AB,则FM=BM,BF2=2FM2,由AF2﹣FB2=3可得AM﹣BM=1,可求出AM=2,BM=1,则AF的长可求出.【题目详解】如图,过点F作FM⊥AB,∵∠ABF=45°,∴FM=BM,∴BF2=2FM2,∴AF2﹣BF2=AF2﹣FM2﹣BM2=3∴AM2﹣BM2=3,∵AM+BM=3,∴AM﹣BM=1,∴AM=2,BM=1,∴.故选:D.【题目点拨】此题考查菱形的性质,正方形的性质,勾股定理,等腰直角三角形的性质,注意构造直角三角形是解决问题的关键.二、填空题(每题4分,共24分)13、1【解题分析】

先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.【题目详解】解:在方程的两边同时乘以x-1,得,解得.因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.故答案为1.【题目点拨】本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.14、【解题分析】【分析】根据向量的加法运算法则可求出结果.【题目详解】因为AD是△ABC的中线,所以BD=DC,即,又因为-==,所以,.故答案为【题目点拨】本题考核知识点:向量的计算.解题关键点:熟记向量的计算法则.15、1.【解题分析】试题解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案为1.16、1【解题分析】

解:∵∴∴或.∵,∴∴故答案为:1.17、-1【解题分析】

将点代入反比例函数,即可求出m的值.【题目详解】解:将点代入反比例函数得:.故答案为:-1.【题目点拨】本题主要考查反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式18、135°【解题分析】

根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,进而得出答案.【题目详解】连接AC,在Rt△ABC中,由勾股定理得:,∵AB=BC,∴∠BAC=∠ACB=45°,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠DCB=90°+45°=135°,故答案为:135°.【题目点拨】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)【解题分析】

(1)延长BC到B1使B1C=BC,延长AC到A1使A1C=AC,从而得到△A1B1C1;

(2)利用点A1和A2的坐标特征得到平移的规律,然后描点得到△A2B2C2;

(3)利用关于原点对称的点的坐标特征进行判断.【题目详解】(1)△A1B1C1如图所示;(2)△A2B2C2,如图所示;(3)∵,,,,,∴与关于原点对,对称中心坐标为,【题目点拨】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、(1)y1=1.1x+15;y2=1.15x;(2)311;(3)当月通话时间多于311分钟时,A套餐更省钱.【解题分析】试题分析:(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A.试题解析:解:(1)A套餐的收费方式:y1=1.1x+15;B套餐的收费方式:y2=1.15x;(2)由1.1x+15=1.15x,得到x=311,答:当月通话时间是311分钟时,A、B两种套餐收费一样;(3)当月通话时间多于311分钟时,A套餐更省钱.考点:一次函数的应用.21、(1)(1,1)(2)(0,﹣16)(3)【解题分析】

(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.【题目详解】(1)∵点A(﹣2,6)的“级关联点”是点A1,∴A1(﹣2×+6,﹣2+×6),即A1(5,1).设点B(x,y),∵点B的“2级关联点”是B1(3,3),∴解得∴B(1,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,∴N′(nx+y,x+ny),∴,,∴x=3-3n,∴,解得.【题目点拨】本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22、(1)(a﹣b)2;(2)1.【解题分析】

(1)直接提取公因式(a-b),进而分解因式得出答案(2)直接利用提取公因式法分解因式进而把已知代入得出答案【题目详解】解:(1)a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2;(2)∵x+2y=4,∴3x2+12xy+12y2=3(x2+4xy+4y2)=3(x+2y)2把x+2y=4代入得:原式=3×42=1.【题目点拨】此题考查提取公因式法,掌握运算法则是解题关键23、(1)点A(-2,0),B(0,4);(2)点C(-5,0)或(1,0);(3)D(-25,4)或(25,【解题分析】

(1)利用坐标轴上点的特点求解即可得出结论;(2)根据△AOB的面积,可得出点C的坐标;(3)根据勾股定理求出AB的长,再利用菱形的性质可得结果,分两种情况讨论.【题目详解】(1)当x=0,y=4当y=0,x=-2∴点A(-2,0),B(0,4)(2)因为A(-2,0),B(0,4)∴OA=2,OB=4ΔABC的面积为-因为ΔABC的面积为6∴AC=3∵A(-2,0)∴点C(-5,0)或(1,0)(3)存在,理由:①如图:点C再A点左侧,∵A(-2,0),B(0,4),∴AB=22+42=25,∵四边形ACDB为菱形,∴AC=AB=25,∵AC②如图:点C再A点右侧,∵A(-2,0),B(0,4),∴AB=22+42=25,∵四边形ACDB为菱形,∴AC=AB=25,∵AC//__BD,∴AC=BD=AB=【题目点拨】本题考查了一次函数的应用、菱形的性质以及三角形的面积问题,注意掌握数形结合思想和分类讨论的思想.24、(1);(2);(3)见解析;(4)①2121;②m+n=2【解题分析】

(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题;(4)①②根据(2)中的规律即可求解.【题目详解】解:(1),故答案为:;(2),故答案为:;(3)证明:∵左边=,∵n为正整数,∴n+1>1.∴左边=|n+1(n+1),又∵右边=(n+1),∴左

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论