版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省南阳淅川县联考数学八年级第二学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在矩形中,,,分别在边上,.将,分别沿着翻折后得到、.若分别平分,则的长为(
)A.3 B.4 C.5 D.72.一个直角三角形的两边长分别为2和,则第三边的长为()A.1 B.2 C. D.33.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差为,乙组数据的方差为,则乙组数据比甲组数据稳定4.计算+的值等于()A. B.4 C.5 D.2+25.不等式5+2x<1的解集在数轴上表示正确的是().A. B. C. D.6.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,37.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A.6米 B.3米 C.6米 D.3米8.一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟9.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50m B.100m C.160m D.200m10.计算的正确结果是()A. B.1 C. D.﹣1二、填空题(每小题3分,共24分)11.在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.12.已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解_____.13.不等式的解集为________.14.如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,,,则四边形的面积为___________.15.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
16.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.17.化简:________.18.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.三、解答题(共66分)19.(10分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.20.(6分)如图,已知是一次函数和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.21.(6分)已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a,b,c,设△ABC的面积为S.(1)填表:三边a,b,cSc+b-ac-b+a3,4,565,12,13208,15,1724(2)①如果m=(c+b-a)(c-b+a),观察上表猜想S与m之间的数量关系,并用等式表示出来.②证明①中的结论.22.(8分)如图,在四边形ABCD中,AB//CD,AB=BC=2CD,E为对角线AC的中点,F为边BC的中点,连接DE,EF.(1)求证:四边形CDEF为菱形;(2)连接DF交EC于点G,若DF=2,CD=53,求AD23.(8分)解不等式组,并将其解集在数轴上表示出来.(1);(2)24.(8分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).25.(10分)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?26.(10分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.(1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.(2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.(3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
如图作GM⊥AD于M交BC于N,作HT⊥BC于T.根据题意得到∠GAM=∠BAE=∠EAG=30°,根据三角函数的计算得到CT,即可解决问题.【题目详解】如图作GM⊥AD于M交BC于N,作HT⊥BC于T.由题意:∠BAD=90°,∠BAE=∠EAG=∠GAM,∴∠GAM=∠BAE=∠EAG=30°,∵AB=AG=2,∴AM=AG•cos30°=3,同法可得CT=3,易知四边形ABNM,四边形GHTN是矩形,∴BN=AM=3,GH=TN=BC﹣BN﹣CT=10﹣6=4,故选:B.【题目点拨】本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2、C【解题分析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边2既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即2是斜边或直角边.【题目详解】当2和均为直角边时,第三边=;当2为斜边,为直角边,则第三边=,故第三边的长为或故选C.【题目点拨】此题考查勾股定理,解题关键在于分类讨论第三条边的情况.3、C【解题分析】
根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【题目详解】A、一个游戏中奖的概率是,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;
B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;
C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;
D.若甲组数据的方差为,乙组数据的方差为,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【题目点拨】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.4、C【解题分析】
根据二次根式的运算法则即可求出答案.【题目详解】解:原式=2+3
=5
故选C.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.5、C【解题分析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【题目详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【题目点拨】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.6、D【解题分析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、C【解题分析】
由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【题目详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.【题目点拨】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.8、C【解题分析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.9、C【解题分析】分析:根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出a,c的值得解析式;再根据对称性求B3、B4的纵坐标后再求出总长度.解答:解:(1)由题意得B(0,0.5)、C(1,0)设抛物线的解析式为:y=ax2+c代入得a=-c=∴解析式为:y=-x2+(2)当x=0.2时y=0.48当x=0.6时y=0.32∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)=1.6米∴所需不锈钢管的总长度为:1.6×100=160米.故选C.10、A【解题分析】二、填空题(每小题3分,共24分)11、或2【解题分析】
四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠BED=120°算出即可【题目详解】画出示意图,分别讨论A,E在同侧和异侧的情况,∵四边形ABCD为菱形,∠A=60,BD=3,∴△ABD为边长为3等边三角形,则AO=,∵∠BED=120°,则∠OBE=30°,可得OE=,则AE=,同理可得OE’=,则AE’=,所以AE的长度为或【题目点拨】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.12、.【解题分析】根据方程组的解即为函数图象的交点坐标解答即可.解:∵一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),∴方程组的解为.故答案为为.13、【解题分析】
首先去分母,再系数化成1即可;【题目详解】解:去分母得:-x≥3系数化成1得:x≤-3故答案为:x≤-3【题目点拨】本题考查了解一元一次不等式,主要考查学生的计算能力.14、6+4【解题分析】
连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.【题目详解】连结PP′,如图,
∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∵线段CP绕点C顺时针旋转60°得到线段CP',
∴CP=CP′=4,∠PCP′=60°,
∴△PCP′为等边三角形,
∴PP′=PC=4,
∵∠ACP+∠BCP=60°,∠ACP+∠ACP′=60°,
∴∠BCP=∠ACP′,且AC=BC,CP=CP′
∴△BCP≌△ACP′(SAS),
∴AP′=PB=5,
在△APP′中,∵PP′2=42=16,AP2=32=9,AP′2=52=25,
∴PP′2+AP2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴S四边形APCP′=S△APP′+S△PCP′=AP×PP′+×PP′2=6+4,
故答案为:6+4.【题目点拨】此题考查旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是解题的关键.15、AD∥BC(答案不唯一)【解题分析】
根据两组对边分别平行的四边形是平行四边形可得添加的条件为.【题目详解】解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,故答案为.【题目点拨】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.16、x<1【解题分析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.17、;【解题分析】
直接进行约分化简即可.【题目详解】解:,故答案为:.【题目点拨】此题考查约分,分子分母同除一个不为零的数,分式大小不变.18、8【解题分析】
解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.三、解答题(共66分)19、原式=【解题分析】试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.试题解析:原式====解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、1、1、2,∵不等式有意义时x≠±1、1,∴x=2,则原式==1.点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.20、(1)反比例函数解析式为,一函数解析式为;(2).【解题分析】
(1)根据是一次函数与反比例函数的图像的两个交点,可以求得m的值,进而求得n的值,即可解答本题;(2)根据函数图像和(1)中一次函数的解析式可以求得点C的坐标,从而根据可以求得的面积.【题目详解】解:(1)是一次函数的图像与反比例函数的图像的两个交点,得,,,得,∴点,,解得,∴一函数解析式为,即反比例函数解析式为,一函数解析式为;(2)设直线与y轴的交点为C,当时,,∴点C的坐标是,∵点,点,.【题目点拨】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21、(1)6,30,60,4,6,10;(2)①S=m;②见解析【解题分析】
(1)根据直角三角形的面积等于两条直角边的乘积除以2,可求得,把三边对应数值分别代入c-b+a,即得结果;(2)①通过图表中数据分析,可得4S=m,即得S与m的关系式;②利用平方差公式和完全平方公式,把m展开化简,利用勾股定理即可证明.【题目详解】(1)直角三角形面积S=,代入数据分别计算得:,,,由,分别代入计算得:5-4+3=4,13-12+5=6,17-15+8=10;三边a,b,cSc+b-ac-b+a3,4,56645,12,13302068,15,17602410(2)①结合图表可以看出:6×4÷4=6,20×6÷4=30,24×10÷4=60,即得m=4S,所以S=m;②证明:∵m=(c+b-a)(c-b+a)=[c+(b-a)][(c-(b-a)]=[c2-(b-a)2]=[c2-(a2+b2)+2ab]在Rt△ABC中,c2=a2+b2,∴m=×2ab=ab,又∵S=ab,∴S=m.【题目点拨】本题考查了直角三角形的面积求法,平方差公式和完全平方公式的应用,勾股定理的应用,掌握直角三角形的三边关系以及平方差公式和完全平方公式是解题的关键.22、(1)见解析;(2)AD=【解题分析】
(1)由三角形中位线定理可得EF=12AB,EF//AB,CF=12BC,可得AB//CD//EF,EF=CF=CD,由菱形的判定可得结论;
(2)由菱形的性质可得DG=1,DF⊥CE,EG=GC,由勾股定理可得【题目详解】(1)证明:∵E,F分别为AC,BC的中点,∴EF//AB,EF=1∵AB//CD,∴EF//CD,∵AB=2CD,∴EF=CD,∴四边形CDEF是平行四边形.∵AB=BC,∴CF=EF,∴四边形CDEF是菱形.(2)解:∵四边形CDEF是菱形,DF=2,∴DF⊥AC,DG=1在Rt△DGC中,CD=53,可得∴EG=CG=4∵E为AC中点,∴AE=CE=8∴AG=AE+EG=4.在Rt△DGA中,AD=A【题目点拨】本题考查了菱形的性质,三角形中位线定理,勾股定理,熟练运用菱形的性质是本题的关键.23、(1),答案见解析;(2)不等式组无解,答案见解析.【解题分析】
(1)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【题目详解】解:(1)去分母得:,
解得:,
;
(2)
由①得:x>2,
由②得:x<−1,
则不等式组无解.【题目点拨】本题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.24、(1)D(1,3);(2)①详见解析;②H(,3);(3)≤S≤.【解题分析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【题目详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=,∴BH=,∴H(,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5-)=,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.综上所述,≤S≤.【题目点拨】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.25、“海天”号的航行方向是沿北偏西方向航行【解题分析】
直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案.【题目详解】由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东60°方向航行,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影像与手术设备协同维护
- 2025年广告投放协议(视频)
- 康复设备人机交互:适配不同功能障碍患者的个性化方案
- 康复医疗质量评价与持续改进策略
- 2025年宠物急诊专员年终应急处置报告
- 师资同伴互助学习机制构建
- 屈光白内障联合手术常见并发症的预防策略
- 护理岗位护理岗位沟通技巧
- 屈光术前眼内压评估与术中调控策略优化
- 医疗健康大数据平台的建设与运营
- 北京市海淀区2023-2024学年高三上学期期末考试地理试卷及答案
- 火锅店管理运营手册
- 不带薪实习合同范例
- 山东济南历年中考语文现代文之记叙文阅读14篇(截至2024年)
- 安全生产新年第一课
- 2023-2024学年广东省广州市白云区六年级(上)期末数学试卷
- 产房护士长工作总结
- 生命伦理学:生命医学科技与伦理智慧树知到期末考试答案章节答案2024年山东大学
- JJG 4-2015钢卷尺行业标准
- 全球胜任力英语教程 课件 Unit 2 saying no to poverty
- 个人投资收款收据
评论
0/150
提交评论