版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省曲阜师范大学附属中学2023年高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知集合,则中元素的个数为A.1 B.2C.3 D.42.一种药在病人血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为()A.1.5小时 B.2小时C.2.5小时 D.3小时3.将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向右平移个单位,得到的图象对应的解析式是A. B.C. D.4.如图是正方体或四面体,分别是所在棱的中点,则这四个点不共面的一个图是()A. B.C. D.5.设,为正数,且,则的最小值为()A. B.C. D.6.如下图所示,在正方体中,下列结论正确的是A.直线与直线所成的角是 B.直线与平面所成的角是C.二面角的大小是 D.直线与平面所成的角是7.已知函数,若函数有3个零点,则实数m的取值范围()A. B.C.(0,1) D.8.某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为()A. B.C. D.9.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.10.设集合则().A. B.C. D.11.为庆祝深圳特区成立40周年,2020年10月11日深圳无人机精英赛总决赛在光明区举行,全市共39支队伍参加,下图反映了某学校代表队制作的无人机载重飞行从某时刻开始15分钟内的速度(单位:米/分)与时间x(单位:分)的关系.若定义"速度差函数"u(x)为无人机在时间段为[0,x]内的最大速度与最小速度的差,则u(x)的图象为()A B.C. D.12.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数是幂函数,且时,单调递减,则的值为___________.14.已知函数,则函数的零点个数为__________15.已知向量,若,则m=____.16.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.三、解答题(本大题共6小题,共70分)17.如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,.(1)证明:平面;(2)求直线与平面所成的角的正弦值.18.如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,中点(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积19.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.20.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围21.已知函数,.(1)若函数在上是减函数,求实数的取值范围;(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.22.计算下列各式:(1);(2)
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】利用交集定义先求出A∩B,由此能求出A∩B中元素的个数【详解】∵集合∴A∩B={3},∴A∩B中元素的个数为1故选A【点睛】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用2、D【解析】设时间为,依题意有,解指数不等式即可;【详解】解:设时间为,有,即,解得.故选:D3、D【解析】横坐标伸长倍,则变为;根据左右平移的原则可得解析式.【详解】横坐标伸长倍得:向右平移个单位得:本题正确选项:【点睛】本题考查三角函数图象平移变换和伸缩变换,关键是能够明确伸缩变换和平移变换都是针对于的变化.4、D【解析】A,B,C选项都有,所以四点共面,D选项四点不共面.故选:D.5、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.6、D【解析】选项,连接,,因为,所以直线与直线所成的角为,故错;选项,因为平面,故为直线与平面所成的角,根据题意;选项,因为平面,所以,故二面角的平面角为,故错;用排除法,选故选:D7、C【解析】函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点,作出图象,即可求出实数的取值范围【详解】因为函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点作出函数图象,由图可知,实数的取值范围是故选:C.8、A【解析】先由三视图得出该几何体的直观图,结合题意求解即可.【详解】由三视图可知其直观图,该几何体为四棱锥P-ABCD,最长的棱为PA,则最长的棱长为,故选A【点睛】本题主要考查几何体的三视图,属于基础题型.9、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.10、D【解析】利用求集合交集的方法求解.【详解】因为所以.故选:D.【点睛】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.11、D【解析】根据,“速度差函数”的定义,分,、,、,、,四种情况,分别求得函数的解析式,从而得到函数的图象【详解】解:由题意可得,当,时,翼人做匀加速运动,,“速度差函数”当,时,翼人做匀减速运动,速度从160开始下降,一直降到80,当,时,翼人做匀减速运动,从80开始下降,,当,时,翼人做匀加速运动,“速度差函数”,结合所给的图象,故选:12、D【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积【详解】根据题意,画出示意图如下图所示因为,所以三角形ABC为直角三角形,面积为,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值即当DQ⊥平面ABC时体积最大所以所以设球心为O,球的半径为R,则即解方程得所以球的表面积为所以选D【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题二、填空题(本大题共4小题,共20分)13、【解析】根据幂函数定义求出m的值,根据函数的单调性确定m的值,再利用对数运算即可.【详解】为幂函数,,解得:或当时,在上单调递增,不符合题意,舍去;当时,在上单调递减,符合题意;,故答案为:14、3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3故答案为:315、-1【解析】求出的坐标,由向量共线时坐标的关系可列出关于的方程,从而可求出的值.【详解】解:∵,∴,∵,,∴,解得.故答案为:-116、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题三、解答题(本大题共6小题,共70分)17、(1)详见解析;(2).【解析】(1)连接交于点,连接,,可证明四边形是平行四边形,从而,再由线面平行的判定即可求解;(2)作出平面的垂线,即可作出线面角,求出相关线段的长度即可求解.试题解析:(1)连接交于点,连接,,∵为菱形,∴点在上,且,又∵,故四边形是平行四边形,则,∴平面;(2)由于为菱形,∴,又∵是直四棱柱,∴,平面,∴平面平面,过点作平面和平面交线的垂线,垂足为,得平面,连接,则是直线平面所成的角,设,∵是菱形且,则,,在中,由,,得,在中,由,,得,∴.考点:1.线面平行的判定;2.线面角的求解.18、(1)见解析;(2)见解析;(3).【解析】(Ⅰ)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(Ⅱ)证明OC⊥平面VAB,即可证明平面MOC⊥平面VAB;(Ⅲ)利用等体积法求三棱锥A-MOC的体积即可试题解析:(Ⅰ)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(Ⅱ)证明:∵AC=BC,O为AB的中点,∴OC⊥AB,又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(Ⅲ)在等腰直角三角形中,,所以.所以等边三角形的面积.又因为平面,所以三棱锥的体积等于.又因为三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积为.考点:平面与平面垂直的判定;直线与平面平行的判定;用向量证明平行19、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω由周期T确定,即先由图象得到函数的周期,再求出T(3)φ的求法通常有以下两种:①代入法:把图象上的一个已知点代入解析式(此时,A,ω,B已知)求解即可,此时要注意交点在上升区间还是下降区间②五点法:确定φ值时,往往以寻找“五点法”中的零点作为突破口,具体如下:“第一点”(即图象上升时与x轴的交点中距原点最近的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=20、(1)(2)【解析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单调递增,在上单调递减,且当时,由正弦函数图象可知,解得,故实数的取值范围是21、(1)(2)答案见解析【解析】(1)讨论和时实数的取值范围,再结合的范围与函数的对称轴讨论使得在上是减函数的范围即可;(2)假设存在整数,使得的解集恰好是.则,由,解出整数,再代入不等式检验即可小问1详解】解:令,则.当,即时,恒成立,所以.因为在上是减函数,所以,解得,所以.由,解得或.当时,的图象对称轴,且方程的两根均为正,此时在为减函数,所以符合条件.当时,的图象对称轴,且方程的根为一正一负,要使在单调递减,则,解得.综上可知,实数的取值范围为【小问2详解】解:假设存在整数,使的解集恰好是,则①若函数在上单调递增,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均不满足要求;②若函数在上单调递减,则,且,即作差得到,代回得到:,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州民航低空经济发展有限公司旗下企业招聘模拟笔试试题及答案解析
- 2025年合肥市第四十六中学招聘体育教师备考笔试题库及答案解析
- 广东江门台山市林业局招聘2人参考笔试题库附答案解析
- 2025南平市延平区国有资产投资经营有限公司招聘综合部业务员1人参考考试试题及答案解析
- 2025江苏省体育科学研究所招聘专业技术人员3人参考考试试题及答案解析
- 2025年12月广西玉林市陆川县城镇公益性岗位人员招聘1人备考笔试试题及答案解析
- 2025内蒙古呼伦贝尔市大学生乡村医生专项计划招聘3人模拟笔试试题及答案解析
- 2025华钛科技招聘99人考试备考题库及答案解析
- 2025河北兴冀人才资源开发有限公司招聘护理助理90人参考考试题库及答案解析
- 深度解析(2026)《GBT 25674-2010螺钉槽铣刀》(2026年)深度解析
- 计算思维与人工智能 课件 第8章 智能图像处理
- 探索丝绸之路课件
- 2025秋季国开《经济学(本)》期末考试题库及答案
- (新教材)2026年人教版八年级下册数学 24.3 数据的四分位数 课件
- 2025年甘肃省武威市凉州区大柳镇选聘专业化管理大学生村文书笔试考试备考试题及答案解析
- 戥秤的课件教学课件
- 2025内蒙古润蒙能源有限公司招聘22人考试笔试备考试题及答案解析
- 虚拟现实行业 VR 全景拍摄师岗位招聘考试试卷及答案
- 供应链金融业务操作与风险管理
- 2025年广西学法用法考试试题及答案
- 2025全球包装材料标准BRCGS第7版内部审核全套记录
评论
0/150
提交评论