辽宁省盘锦双台子区六校联考2024届数学八上期末综合测试试题含解析_第1页
辽宁省盘锦双台子区六校联考2024届数学八上期末综合测试试题含解析_第2页
辽宁省盘锦双台子区六校联考2024届数学八上期末综合测试试题含解析_第3页
辽宁省盘锦双台子区六校联考2024届数学八上期末综合测试试题含解析_第4页
辽宁省盘锦双台子区六校联考2024届数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省盘锦双台子区六校联考2024届数学八上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知AB=AD,AC=AE,若要判定△ABC≌△ADE,则下列添加的条件中正确的是()A.∠1=∠DAC B.∠B=∠D C.∠1=∠2 D.∠C=∠E2.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A的面积为()A.6 B.36 C.64 D.83.若是完全平方式,则的值是()A. B. C.+16 D.-164.下列各组数是勾股数的是()A.1,2,3 B.0.3,0.4,0.5C.6,8,10 D.5,11,125.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.6.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.107.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱8.某教师招聘考试分笔试和面试两个环节进行,其中笔试按60%、面试按40%计算加权平均数作为最终的总成绩.吴老师笔试成绩为90分,面试成绩为85分,那么吴老师的总成绩为()A.85分 B.86分 C.87分 D.88分9.下列各式计算正确的是()A. B. C. D.10.下列各式计算结果是的是()A. B. C. D.11.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.​

B.​

C.​

D.​12.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°二、填空题(每题4分,共24分)13.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.14.如图所示,垂直平分,交于点D,交于点E,若,则_______.15.如图,在中,,于,若,,则___________.16.七巧板被誉为“东方魔板”.小明利用七巧板(如图1)中各板块的边长之间的关系拼成一个凸六边形,则该凸六边形(如图2)的周长是_____.17.若实数、满足,则________.18.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.三、解答题(共78分)19.(8分)(1)运用乘法公式计算:.(2)解分式方程:.20.(8分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.21.(8分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是;(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.22.(10分)某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.社区甲型垃圾桶乙型垃圾桶总价A1083320B592860Cab2820(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?(2)按要求各个社区两种类型的垃圾桶都要有,则a=.23.(10分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.24.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(3,1),C(2,3).(1)作出关于轴对称的图形,并写出点的坐标;(2)求的面积.25.(12分)陈史李农场2012年某特产种植园面积为y亩,总产量为m吨,由于工业发展和技术进步,2013年时终止面积减少了10%,平均每亩产量增加了20%,故当年特产的总产量增加了20吨.(1)求2013年这种特产的总产量;(2)该农场2012年有职工a人.2013年时,由于多种原因较少了30人,故这种特产的人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩.求2012年的职工人数a与种植面积y.26.如图1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)直接写出点B关于x轴对称的对称点B1的坐标为,直接写出点B关于y轴对称的对称点B2的坐标为,直接写出△AB1B2的面积为;(2)在y轴上找一点P使PA+PB1最小,则点P坐标为;(3)图2是10×10的正方形网格,顶点在这些小正方形顶点的三角形为格点三角形,①在图2中,画一个格点三角形△DEF,使DE=10,EF=5,DF=3;②请直接写出在图2中满足①中条件的格点三角形的个数.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据题目中给出的条件,,根据全等三角形的判定定理判定即可.【详解】解:,,则可通过,得到,利用SAS证明△ABC≌△ADE,故选:C.【点睛】此题主要考查了全等三角形的判定,关键是要熟记判定定理:,,,.2、A【分析】根据图形知道所求的A的面积即为正方形中间的直角三角形的A所在直角边的平方,然后根据勾股定理即可求解.【详解】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方,∴正方形A的面积=14-8=1.故选:A.【点睛】本题主要考查勾股树问题:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.3、B【分析】根据完全平方公式:,即可得出结论.【详解】解:∵是完全平方式,∴解得:故选B.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.4、C【分析】根据勾股定理和勾股数的概念,逐一判断选项,从而得到答案.【详解】A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵62+82=102,∴这组数是勾股数;D、∵52+112≠122,∴这组数不是勾股数.故选:C.【点睛】本题主要考查勾股数的概念,掌握“若,且a,b,c是正整数,则a,b,c是勾股数”是解题的关键.5、B【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断.【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.6、C【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.7、D【分析】A、观察函数图象,可得出:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【详解】A、观察函数图象,可知:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:,解得:,∴yA=3x-45(x≥25),当x=35时,yA=3x-45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:,解得:,∴yB=3x-100(x≥50),当x=70时,yB=3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.8、D【分析】根据加权平均数的计算方法进行计算即可得解.【详解】依题意得:分,故选:D.【点睛】本题主要考查了加权平均数,熟练掌握加权平均数得解法是解决本题的关键.9、D【解析】试题解析:A.,故原选项错误;B.,故原选项错误;C.,故原选项错误;D.,正确.故选D.10、B【分析】根据同底数幂相乘,幂的乘方,同底数幂相除及合并同类项的知识解答即可.【详解】,故A错误;,故B正确;,故C错误;与不是同类项,无法合并,故D错误.故选:B【点睛】本题考查的是同底数幂相乘,幂的乘方,同底数幂相除及合并同类项,掌握各运算的法则是关键.11、A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,

∵AB=AC,点M为BC中点,

∴AM⊥CM(三线合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,

又S△AMC=MN•AC=AM•MC,∴MN==.

故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.12、B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.二、填空题(每题4分,共24分)13、110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.14、40°【分析】根据垂直平分线的性质可得AE=BE,再根据等边对等角可得∠ABE=∠A,利用直角三角形两锐角互余可得∠A的度数即∠ABE的度数.【详解】解:∵垂直平分,∴AE=BE,∠ADE=90°,∴∠ABE=∠A=90°-=40°,故答案为:40°.【点睛】本题考查垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余.理解垂直平分线上的点到线段两端距离相等是解题关键.15、2【分析】延长BA,过点C作CD⊥BA于点D,则△ACD是等腰直角三角形,设CD=AD=h,CH=x,利用面积相等和勾股定理,得到关于h与x的方程组,解方程组,求出x,即可得到CH的长度.【详解】解:延长BA,过点C作CD⊥BA于点D,如图:∵,∴∠CAD=45°,∴△ACD是等腰直角三角形,∴CD=AD,∵,∴△ABH和△ACH是直角三角形,设CD=AD=h,CH=x,由勾股定理,得,,∵,∴,联合方程组,得,解得:或(舍去);∴.故答案为:2.【点睛】本题考查了等腰三角形的判定和性质,勾股定理,解题的关键是熟练运用勾股定理和面积相等法,正确得到边之间的关系,从而列式计算.16、4+8【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【详解】解:如图所示:图形1:边长分别是:4,2,2;图形2:边长分别是:4,2,2;图形3:边长分别是:2,,;图形4:边长是:;图形5:边长分别是:2,,;图形6:边长分别是:,2;图形7:边长分别是:2,2,2;∴凸六边形的周长=2+2×2+2+×4=4+8;故答案为:4+8.【点睛】本题考查了正方形的性质、勾股定理、等腰直角三角形的性质;熟练掌握正方形的性质,利用勾股定理进行计算是解题关键17、1【分析】先根据非负数的性质求出、的值,再求出的值即可.【详解】解:∵,∴,解得,,∴.故答案为1.【点睛】本题考查的是非负数的性质,属于基础题型,熟知非负数的性质:几个非负数的和为0时,其中每一项必为0是解答此题的关键.18、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.三、解答题(共78分)19、(1);(2)无解【分析】(1)先添括号化为平方差公式的形式,再根据平方差公式计算,最后根据完全平方公式计算即可;(2)先去分母化为整式方程,解整式方程,再检验得最简公分母值为0,从而得到分式方程无解.【详解】解:;解:.方程两边同时乘以,得.解得.检验:当时,,因此不是原分式方程的解,所以,原分式方程无解.【检验】本题考查了乘法公式和解分式方程,熟练掌握乘法公式和解分式方程的一般步骤是解题的关键.20、(1)①C(4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.(1)①由题意,解得所以C(4,4);②把代入得,,所以A点坐标为(6,0),所以;(2)由题意,在OC上截取OM=OP,连结MQ∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为12,所以AM=12÷4=1,∴AQ+PQ存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.21、(1)2,3,-1;(2);(3)(4)或【解析】试题分析:(1)对于直线,令求出的值,确定出A的坐标,把B坐标代入中求出b的值,再将D坐标代入求出n的值,进而将D坐标代入求出的值即可;由两个一次函数解析式,结合图象确定出的范围;过D作垂直于轴,四边形的面积等于梯形面积减去三角形面积,求出即可;在轴上存在点P,使得以点P、C、D为顶点的三角形是直角三角形,理由:分两种情况考虑:;‚,分别求出P点坐标即可.试题解析:(1)对于直线,令得到,即A(0,1),把B(0,-1)代入中,得:,把D(1,n)代入得:,即D(1,2),把D坐标代入中得:,即,故答案为2,3,-1;一次函数与交于点D(1,2),由图象得:函数的函数值大于函数的函数值时的取值范围是;故答案为;过D作垂直于轴,如图1所示,则(4)如图2,在轴上存在点P,使得以点P、C、D为顶点的三角形是直角三角形,理由:分两种情况考虑:当时,可得斜率为3,斜率为,解析式为令即‚当时,由D横坐标为1,得到P点横坐标为1,在轴上,考点:一次函数综合题.22、(1)甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)3或1.【分析】(1)设甲型垃圾桶的单价为x元,乙型垃圾桶的单价每套为y元,根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组即可解答;(2)根据图表中的数据列出关于a\b的二元一次方程,结合a、b的取值范围求整数解即可.【详解】(1)设甲型垃圾桶的单价每套为x元,乙型垃圾桶的单价每套为y元,根据题意,得解得答:甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)由题意,得140a+240b=2820整理得,7a+12b=141因为a、b都是整数,所以或答:a的值为3或1.故答案为3或1.【点睛】本题考查了二元一次方程组的实际应用,掌握解二元一次方程组的方法是解题的关键.23、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,

∴∠AED=90°=∠ACB,

又∵AD平分∠BAC,

∴∠DAE=∠DAC,

∵AD=AD,

∴△AED≌△ACD,

∴AE=AC,

∵AD平分∠BAC,

∴AD⊥CE,

即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.24、(1)作图见解析;.(2)【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接即可得;(2)直接求出三角形的底边和高,根据三角形的面积公式,即可得到答案.【详解】解:(1)如图:为所求;点的坐标为:(2,);(2)根据题意,,边上的高为2,∴.【点睛】本题主要考查作图——轴对称变换,熟练掌握轴对称变换的定义和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论