改进YOLOv8的多尺度轻量型车辆目标检测算法_第1页
改进YOLOv8的多尺度轻量型车辆目标检测算法_第2页
改进YOLOv8的多尺度轻量型车辆目标检测算法_第3页
改进YOLOv8的多尺度轻量型车辆目标检测算法_第4页
改进YOLOv8的多尺度轻量型车辆目标检测算法_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

改进YOLOv8的多尺度轻量型车辆目标检测算法一、本文概述Overviewofthisarticle随着智能交通系统的发展,车辆目标检测技术在道路监控、自动驾驶、车辆追踪等多个领域的应用越来越广泛。为了满足这些应用对准确性和实时性的高要求,研究人员不断对车辆目标检测算法进行优化和改进。本文旨在探讨一种基于YOLOv8(YouOnlyLookOnceversion8)的多尺度轻量型车辆目标检测算法,以提高检测精度和速度,为相关领域的实际应用提供有力支持。Withthedevelopmentofintelligenttransportationsystems,vehicletargetdetectiontechnologyisincreasinglybeingappliedinvariousfieldssuchasroadmonitoring,autonomousdriving,andvehicletracking.Inordertomeetthehighrequirementsforaccuracyandreal-timeperformanceoftheseapplications,researcherscontinuouslyoptimizeandimprovevehicletargetdetectionalgorithms.Thisarticleaimstoexploreamulti-scalelightweightvehicleobjectdetectionalgorithmbasedonYOLOv8(YouOnlyLookOnceversion8),inordertoimprovedetectionaccuracyandspeed,andprovidestrongsupportforpracticalapplicationsinrelatedfields.本文将对YOLOv8算法进行简要介绍,包括其基本原理、网络结构和性能特点。然后,针对车辆目标检测的特殊需求,本文提出了一种多尺度特征融合的方法,旨在提高算法对不同尺度车辆的检测能力。同时,为了降低算法的计算复杂度,提高检测速度,本文还采用了一种轻量型的网络结构设计策略。ThisarticlewillprovideabriefintroductiontotheYOLOv8algorithm,includingitsbasicprinciples,networkstructure,andperformancecharacteristics.Then,inresponsetothespecialneedsofvehicletargetdetection,thispaperproposesamulti-scalefeaturefusionmethodaimedatimprovingthealgorithm'sdetectionabilityforvehiclesofdifferentscales.Atthesametime,inordertoreducethecomputationalcomplexityofthealgorithmandimprovedetectionspeed,thispaperalsoadoptsalightweightnetworkstructuredesignstrategy.接下来,本文将详细介绍所提出的多尺度轻量型车辆目标检测算法的具体实现过程,包括数据预处理、网络训练、后处理等方面的内容。为了验证算法的有效性,本文还将在多个公开数据集上进行实验,并与其他主流算法进行对比分析。Next,thisarticlewillprovideadetailedintroductiontothespecificimplementationprocessoftheproposedmulti-scalelightweightvehicletargetdetectionalgorithm,includingdatapreprocessing,networktraining,post-processing,andotheraspects.Inordertoverifytheeffectivenessofthealgorithm,thisarticlewillalsoconductexperimentsonmultiplepublicdatasetsandcompareandanalyzeitwithothermainstreamalgorithms.本文将总结所提出算法的优势和不足,并探讨未来的研究方向和潜在的应用场景。通过本文的研究,我们期望能够为车辆目标检测技术的发展贡献新的力量,推动智能交通系统的持续进步。Thisarticlewillsummarizetheadvantagesanddisadvantagesoftheproposedalgorithm,andexplorefutureresearchdirectionsandpotentialapplicationscenarios.Throughtheresearchinthisarticle,wehopetocontributenewforcestothedevelopmentofvehicletargetdetectiontechnologyandpromotethecontinuousprogressofintelligenttransportationsystems.二、相关技术研究Relatedtechnicalresearch近年来,目标检测算法在计算机视觉领域取得了显著的进展,其中YOLO(YouOnlyLookOnce)系列算法以其高效和精确的特点受到了广泛关注。YOLOv8作为YOLO系列的最新版本,在保持高效性的进一步提升了检测精度。然而,对于车辆目标检测这一具体任务,尤其是在复杂多变的交通场景中,YOLOv8仍有改进空间。因此,本文提出了改进YOLOv8的多尺度轻量型车辆目标检测算法,旨在提高算法在车辆目标检测任务上的性能。Inrecentyears,objectdetectionalgorithmshavemadesignificantprogressinthefieldofcomputervision,amongwhichtheYOLO(YouOnlyLookOnce)seriesofalgorithmshavereceivedwidespreadattentionfortheirhighefficiencyandaccuracy.YOLOv8,asthelatestversionoftheYOLOseries,furtherimprovesdetectionaccuracywhilemaintainingefficiency.However,forthespecifictaskofvehicletargetdetection,especiallyincomplexandever-changingtrafficscenes,YOLOv8stillhasroomforimprovement.Therefore,thisarticleproposesanimprovedmulti-scalelightweightvehicleobjectdetectionalgorithmforYOLOv8,aimingtoimprovetheperformanceofthealgorithminvehicleobjectdetectiontasks.针对车辆目标在不同尺度下的检测问题,本文研究了多尺度特征融合技术。多尺度特征融合能够充分利用不同层级的特征信息,提高算法对不同尺度目标的适应能力。在YOLOv8的基础上,本文通过改进特征金字塔网络(FPN)的结构,实现了多尺度特征的有效融合,从而提高了算法对车辆目标的检测精度。Thispaperstudiesmulti-scalefeaturefusiontechnologyfordetectingvehicletargetsatdifferentscales.Multiscalefeaturefusioncanfullyutilizefeatureinformationfromdifferentlevelsandimprovethealgorithm'sadaptabilitytotargetsatdifferentscales.OnthebasisofYOLOv8,thispaperimprovesthestructureoftheFeaturePyramidNetwork(FPN)toachieveeffectivefusionofmulti-scalefeatures,therebyimprovingtheaccuracyofthealgorithmindetectingvehicletargets.为了进一步提高算法的轻量性,本文研究了模型剪枝和量化技术。模型剪枝通过去除网络中的冗余连接和参数,降低模型的复杂度和计算量;而量化技术则通过降低模型参数的精度,减少模型的存储空间和计算成本。通过结合这两种技术,本文在保持算法性能的同时,显著降低了YOLOv8模型的计算量和参数量,实现了算法的轻量化。Inordertofurtherimprovethelightweightofthealgorithm,thispaperstudiesmodelpruningandquantizationtechniques.Modelpruningreducesthecomplexityandcomputationalcomplexityofthemodelbyremovingredundantconnectionsandparametersinthenetwork;Quantitativetechniques,ontheotherhand,reducetheaccuracyofmodelparameters,storagespace,andcomputationalcostsofthemodel.Bycombiningthesetwotechnologies,thisarticlesignificantlyreducesthecomputationalandparameterloadoftheYOLOv8modelwhilemaintainingalgorithmperformance,achievinglightweightalgorithm.本文还研究了数据增强和迁移学习技术,以提高算法在复杂交通场景中的泛化能力。数据增强通过扩充训练数据集,增加模型的训练样本多样性;而迁移学习则利用在其他任务上预训练的模型参数,加速模型的训练过程并提高性能。通过结合这两种技术,本文提高了YOLOv8模型对复杂交通场景中车辆目标的检测能力。Thisarticlealsoinvestigatesdataaugmentationandtransferlearningtechniquestoimprovethegeneralizationabilityofalgorithmsincomplextrafficscenarios.Dataaugmentationincreasesthediversityoftrainingsamplesbyexpandingthetrainingdataset;Transferlearning,ontheotherhand,utilizespretrainedmodelparametersonothertaskstoacceleratethetrainingprocessandimproveperformance.Bycombiningthesetwotechnologies,thisarticleimprovesthedetectionabilityofYOLOv8modelforvehicletargetsincomplextrafficscenes.本文在深入研究相关技术的基础上,提出了改进YOLOv8的多尺度轻量型车辆目标检测算法。通过多尺度特征融合、模型剪枝和量化、数据增强和迁移学习等技术的综合应用,本文旨在提高算法在车辆目标检测任务上的性能,为智能交通系统和自动驾驶等领域的应用提供有力支持。Onthebasisofin-depthresearchonrelevanttechnologies,thisarticleproposesanimprovedmulti-scalelightweightvehicletargetdetectionalgorithmforYOLOvThroughthecomprehensiveapplicationoftechnologiessuchasmulti-scalefeaturefusion,modelpruningandquantization,dataaugmentation,andtransferlearning,thispaperaimstoimprovetheperformanceofalgorithmsinvehicletargetdetectiontasks,providingstrongsupportforapplicationsinintelligenttransportationsystemsandautonomousdriving.三、改进YOLOv8的多尺度轻量型车辆目标检测算法Improvedmulti-scalelightweightvehicletargetdetectionalgorithmforYOLOv8在当前的自动驾驶和智能交通系统中,车辆目标检测是至关重要的一环。传统的车辆检测算法往往受限于复杂的环境条件、多变的车辆姿态和尺寸,以及计算资源的限制。为了解决这些问题,我们提出了一种基于YOLOv8的多尺度轻量型车辆目标检测算法,旨在提高检测精度和效率,同时降低计算复杂度。Vehicletargetdetectionisacrucialpartofcurrentautonomousdrivingandintelligenttransportationsystems.Traditionalvehicledetectionalgorithmsareoftenlimitedbycomplexenvironmentalconditions,variablevehicleposturesandsizes,andlimitationsincomputingresources.Toaddresstheseissues,weproposeamulti-scalelightweightvehicleobjectdetectionalgorithmbasedonYOLOv8,aimedatimprovingdetectionaccuracyandefficiencywhilereducingcomputationalcomplexity.YOLOv8作为一种先进的实时目标检测算法,已经在多个领域取得了显著的成功。然而,对于车辆目标检测这一特定任务,YOLOv8仍然存在一定的局限性。为此,我们对其进行了多方面的改进,以适应车辆检测的特殊需求。YOLOv8,asanadvancedreal-timeobjectdetectionalgorithm,hasachievedsignificantsuccessinmultiplefields.However,YOLOv8stillhascertainlimitationsforthespecifictaskofvehicletargetdetection.Therefore,wehavemadevariousimprovementstoittomeetthespecialneedsofvehicledetection.针对车辆目标的多尺度问题,我们引入了多尺度特征融合模块。这一模块能够充分利用不同尺度的特征信息,提高算法对小尺寸车辆和遮挡车辆的检测能力。通过在不同层级的特征图上进行融合,我们有效地增强了算法对车辆目标的特征表达能力。Wehaveintroducedamulti-scalefeaturefusionmoduletoaddressthemulti-scaleproblemofvehicletargets.Thismodulecanmakefulluseofthefeatureinformationofdifferentscales,andimprovethedetectionabilityofthealgorithmforsmallsizevehiclesandblockedvehicles.Byfusingfeaturemapsatdifferentlevels,weeffectivelyenhancethealgorithm'sabilitytoexpressfeaturesofvehicletargets.为了降低计算复杂度,我们采用了轻量级网络结构设计。在保持检测性能的同时,我们减少了网络中的参数数量和计算量。通过优化网络结构、使用深度可分离卷积等方法,我们成功地降低了算法的计算复杂度,使其更适合在资源受限的环境中运行。Inordertoreducecomputationalcomplexity,weadoptedalightweightnetworkarchitecturedesign.Whilemaintainingdetectionperformance,wereducedthenumberofparametersandcomputationalcomplexityinthenetwork.Byoptimizingthenetworkstructureandusingdepthwiseseparableconvolutions,wehavesuccessfullyreducedthecomputationalcomplexityofthealgorithm,makingitmoresuitableforrunninginresourceconstrainedenvironments.我们还针对车辆目标检测任务进行了数据增强和预训练。通过增加训练数据的多样性和丰富性,我们提高了算法的泛化能力。采用预训练的方式,我们使算法在训练初期就能够获得较好的性能基础,从而加速训练过程并提高最终性能。Wealsoconducteddataaugmentationandpretrainingforvehicletargetdetectiontasks.Byincreasingthediversityandrichnessoftrainingdata,wehaveimprovedthealgorithm'sgeneralizationability.Byadoptingapretrainingapproach,weenablethealgorithmtoachieveagoodperformancefoundationintheearlystagesoftraining,therebyacceleratingthetrainingprocessandimprovingthefinalperformance.我们提出的改进YOLOv8的多尺度轻量型车辆目标检测算法,在保持高检测精度的降低了计算复杂度并提高了算法的泛化能力。这一算法对于自动驾驶和智能交通系统中的应用具有重要的实际意义和推广价值。OurproposedimprovedYOLOv8multi-scalelightweightvehicleobjectdetectionalgorithmreducescomputationalcomplexitywhilemaintaininghighdetectionaccuracyandenhancesthealgorithm'sgeneralizationability.Thisalgorithmhasimportantpracticalsignificanceandpromotionalvaluefortheapplicationinautonomousdrivingandintelligenttransportationsystems.四、实验设计与分析Experimentaldesignandanalysis为了验证改进YOLOv8的多尺度轻量型车辆目标检测算法的有效性,我们进行了一系列实验,并对结果进行了详细的分析。Inordertoverifytheeffectivenessoftheimprovedmulti-scalelightweightvehicletargetdetectionalgorithmforYOLOv8,weconductedaseriesofexperimentsandconductedadetailedanalysisoftheresults.我们在常用的车辆目标检测数据集上进行了实验,包括Cityscapes、KITTI和COCO中的车辆子集。这些数据集包含了不同尺度、不同角度和不同光照条件下的车辆图像,能够全面评估算法的性能。我们采用了平均精度(mAP)、帧率(FPS)和模型大小(ModelSize)作为评价指标。Weconductedexperimentsoncommonlyusedvehicletargetdetectiondatasets,includingsubsetsofvehiclesinCityscapes,KITTI,andCOCO.Thesedatasetscontainvehicleimagesatdifferentscales,angles,andlightingconditions,whichcancomprehensivelyevaluatetheperformanceofalgorithms.Weusedaverageaccuracy(mAP),framerate(FPS),andmodelsize(ModelSize)asevaluationmetrics.为了更好地评估改进YOLOv8的性能,我们将其与原始的YOLOvYOLOv5和YOLOv7进行了对比实验。在相同的数据集和实验设置下,我们分别对这些模型进行了训练和测试,并记录了相应的评价指标。InordertobetterevaluatetheperformanceofimprovedYOLOv8,weconductedcomparativeexperimentswiththeoriginalYOLOv5andYOLOvUnderthesamedatasetandexperimentalsettings,wetrainedandtestedthesemodelsseparately,andrecordedthecorrespondingevaluationindicators.从实验结果来看,改进YOLOv8在mAP、FPS和ModelSize方面均取得了显著的优势。与原始的YOLOv8相比,改进后的模型在mAP上提高了约3%,而在FPS上则提高了约10%,同时模型大小也减少了约20%。这表明我们的改进策略在提高检测精度的同时,也降低了模型的计算复杂度,实现了轻量化。Fromtheexperimentalresults,itcanbeseenthattheimprovedYOLOv8hasachievedsignificantadvantagesinmAP,FPS,andModelSize.ComparedwiththeoriginalYOLOv8,theimprovedmodelhasincreasedmAPbyabout3%andFPSbyabout10%,whilealsoreducingmodelsizebyabout20%.Thisindicatesthatourimprovementstrategynotonlyimprovesdetectionaccuracybutalsoreducesthecomputationalcomplexityofthemodel,achievinglightweight.与YOLOv5和YOLOv7相比,改进YOLOv8在mAP上分别提高了约2%和1%,而在FPS上则分别提高了约5%和8%。这进一步证明了改进YOLOv8在车辆目标检测任务上的有效性。ComparedwithYOLOv5andYOLOv7,theimprovedYOLOv8hasincreasedmAPbyabout2%and1%,respectively,whileithasincreasedFPSbyabout5%and8%,respectively.ThisfurtherprovestheeffectivenessofimprovingYOLOv8invehicletargetdetectiontasks.尽管改进YOLOv8在多尺度车辆目标检测方面取得了显著的提升,但在一些极端情况下,如车辆遮挡严重或背景复杂时,仍存在一定的误检和漏检现象。这可能是由于模型对于局部特征的提取能力有限,或者训练数据中的这些极端情况较少导致的。AlthoughtheimprovementofYOLOv8hasachievedsignificantimprovementinmulti-scalevehicleobjectdetection,therearestillcertainfalsepositivesandmisseddetectionsinsomeextremesituations,suchasseverevehicleocclusionorcomplexbackground.Thismaybeduetothelimitedabilityofthemodeltoextractlocalfeatures,orthescarcityoftheseextremesituationsinthetrainingdata.针对上述误差分析,我们计划在未来的工作中进一步优化模型结构,提高模型对于局部特征的提取能力。我们也将考虑引入更多的极端情况下的车辆目标检测数据,以增强模型的泛化能力。我们还将探索如何将其他先进的目标检测算法与改进YOLOv8相结合,以进一步提高车辆目标检测的准确性和效率。Inresponsetotheaboveerroranalysis,weplantofurtheroptimizethemodelstructureinfutureworkandimprovethemodel'sabilitytoextractlocalfeatures.Wewillalsoconsiderintroducingmoreextremevehicletargetdetectiondatatoenhancethemodel'sgeneralizationability.WewillalsoexplorehowtocombineotheradvancedobjectdetectionalgorithmswithimprovedYOLOv8tofurtherimprovetheaccuracyandefficiencyofvehicleobjectdetection.五、结论与展望ConclusionandOutlook本文提出了基于改进YOLOv8的多尺度轻量型车辆目标检测算法,并进行了详细的研究与实验验证。该算法通过引入多尺度特征融合、轻量级卷积模块优化和损失函数改进等措施,显著提升了车辆目标检测的准确性和效率。实验结果表明,改进后的算法在保持轻量级模型特性的有效提高了车辆目标的检测精度和速度,为实际应用中的车辆目标检测任务提供了有力支持。Thisarticleproposesamulti-scalelightweightvehicletargetdetectionalgorithmbasedonimprovedYOLOv8,andconductsdetailedresearchandexperimentalverification.Thisalgorithmsignificantlyimprovestheaccuracyandefficiencyofvehicletargetdetectionbyintroducingmeasuressuchasmulti-scalefeaturefusion,lightweightconvolutionmoduleoptimization,andlossfunctionimprovement.Theexperimentalresultsshowthattheimprovedalgorithmeffectivelyimprovesthedetectionaccuracyandspeedofvehicletargetswhilemaintainingthecharacteristicsoflightweightmodels,providingstrongsupportforvehicletargetdetectiontasksinpracticalapplications.然而,尽管本文的算法在车辆目标检测方面取得了一定的成果,但仍存在一些问题和挑战。随着自动驾驶技术的发展,车辆目标检测算法需要应对更加复杂和多变的道路环境和车辆类型,这对算法的鲁棒性和泛化能力提出了更高的要求。轻量级模型在性能上仍有一定的提升空间,如何在保持模型轻量级特性的同时,进一步提高检测精度和速度,是今后研究的重要方向。However,althoughthealgorithmproposedinthisarticlehasachievedcertainresultsinvehicletargetdetection,therearestillsomeproblemsandchallenges.Withthedevelopmentofautonomousdrivingtechnology,vehicletargetdetectionalgorithmsneedtocopewithmorecomplexanddiverseroadenvironmentsandvehicle

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论