版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AIandAGI:
Past,PresentandFuture
BenGoertzel,PhD
ArtificialGeneralIntelligence(AGI)
“Theabilitytoachievecomplexgoalsincomplexenvironmentsusinglimitedcomputationalresources”AutonomyPracticalunderstandingofselfandothersUnderstanding“whattheproblemis”asopposedtojustsolvingproblemsposedexplicitlybyprogrammers
NarrowAI
ThevastmajorityofAIresearchpracticedinacademiaandindustrytodayfitsintothe“NarrowAI”categoryEach“NarrowAI”programis(intheidealcase)highlycompetentatcarryingoutcertaincomplexgoalsincertainenvironments
Chess-playing,medicaldiagnosis,car-driving,etc.1950
–
AlanTuringproposesatestformachineintelligence1956
–
JohnMcCarthycoinstheterm“artificialintelligence”1959–ArthurSamuel’scheckersprogramwinsgamesagainstthebesthumanplayers1962–Firstindustrialrobotcompany,Unimation,founded1967–“HAL”starsin“2001:ASpaceOdyssey”1969–StanfordResearchInstitute:ShakeytheRobotdemonstratedcombiningmovement,perceptionandproblemsolvingAlanTuringShakeyJohnMcCarthyArthurSamuel1971
–
TerryWinograd’sPhDthesis(M.I.T.)demonstratedtheabilityofcomputerstounderstandEnglishsentencesinarestrictedworldofchildren’sblocks1975-JohnHolland’sbookAdaptationinNaturalandArtificialSystemsformalizesandpopularizes
evolutionaryalgorithms1982-DougLenat’sself-modifyingheuristicAIprogramEURISKOwinstheTravelerTCScontestthesecondyearinarow1983-DannyHillisco-foundedThinkingMachinesCorporationduringhisdoctoralworkatMIT.ThecompanywastodevelopHillis'ConnectionMachinedesignintoacommercialparallelsupercomputerline.TerryWinogradDougLenatConnection
MachineJohnHolland1990-91
–
AItechnologyplaysakeyroleintheGulfWar,fromautomatedco-pilotsandcruisemissiles,tooverallbattlecoordination,andmore1997–IBMsupercomputerDeepBluedefeatsworldchesschampionGarryKasparovina6-gamematch1998
-present--Googleleveragesanincreasingarsenalofnarrow-AItechnologiestoprovidecommerciallysuccessfulWebsearchandaddelivery2001-LionheadStudioreleasesBlackandWhite,apopularvideogameinwhichplayersteachAI-controlledcreatures
usingimitativeandreinforcementlearningGoogle’sFirstServerCreaturefrom
Black&WhiteGulfWarDeepBlue
2001Lotsofreal-world
achievementsLotsofdeep,fascinatingideasNothingclosetoaconsensusontherightpathtohuman-levelAGIInmanycases,AGIvisionshavegivenwaytonarrow-AIsuccessesInOntheneuroside,we’vecomealongwaysinceMcCulloughandPitts…Wecansimulatealotofspikingneurons--butwedon’tknowhowtoconnectthemtoyieldintelligentbehavior.
Today,NarrowAIDominatestheAIField
(inbothacademiaandapplications)DeepBlue-whoopsuspeskyhumansatchess-butcan’tlearntoplayanewgamebasedonadescriptionofthegamerules
DARPAGrandChallenge-agreatleapforward--butitcan’tlearntodrivedifferenttypesofvehiclesbesidescars(trucks,boats,motorcycles)
Google-fantasticservice:butcan’tanswercomplexquestions.WhateverhappenedtoAskJeeves?The“Common-senseBottleneck”
AI’scan’tyetpassthe“5-year-oldchildTuringtest”Narrow-AINLPcan’thandle
ParseselectionforcomplexsentencesSemanticdisambiguationbeyondnounsandverbsPrepositiondisambiguationReferenceresolution(esp.nominal)ContextualinterpretationofcomparativesEtc.WillNarrow-AINLPSoftwareEverCorrectlyInterpretThisParagraph?
“Theworld'sprimarysourceofcaffeineisthecoffeebean(theseedofthecoffeeplant),fromwhichcoffeeisbrewed.Caffeinecontentincoffeevarieswidelydependingonthetypeofcoffee
beanandthemethodofpreparationused;evenbeanswithinagivenbushcanshowvariationsinconcentration.Ingeneral,oneservingofcoffeerangesfrom40milligrams,forasingleshot(30milliliters)ofarabica-varietyespresso,toabout100milligramsforacup(120milliliters)ofdripcoffee.”http://en.wikipedia.org/wiki/CaffeineWillNarrow-AINLPSoftwareEverCreateaChatBotthatKnowsWhatIt’sTalkingAbout?
Human:Whensomeonetalkstoyou,doyoureallyunderstandwhattheyaretalkingabout?
ALICE:Thatdoesnothappenveryoften.
Human:Whatdoesn'thappenveryoften?
ALICE:Whatdoyouthinkitdoes?
Human:Doyoumeanpeopledon'ttalktoyoumuch,orthatyoudon'tunderstandthemmuch?
ALICE:Yes,that'swhatImean,isn'titclear?
Human:Itwasaneither-orquestion.
ALICE:Howdidyoufeelaboutthat?
Human:Basicallyemotionallyneutral.
ALICE:Howinteresting.I'msometimesundecidedmyself.
Human:Whatdoyoudowhenyou'reundecidedaboutsomething?
ALICE:Igivethemostaccuraterepliespossible.
Human:Whatifyoudon'tknowwhichreplyismostaccurate?
ALICE:Tryitandsee.
Human:Anyway,isaccuracyalwaysthemostimportantthinginlife?
ALICE:Askagainlater.AskJohnLennonifitis.
Human:He'sdead.
ALICE:Maybeit'sanotherpersonusinghisname.
Human:WhydidyoubringupJohnLennon?
ALICE:Becausemyprogrammingdeterminedit.
CanNarrowAIIncrementallyLeadtoGeneralAI?IMHO,amajorlessonfromthehistoryofAIis:NarrowAIsuccessisgenerallyoffairlylimiteduseasastepping-stonetowardAGIsuccessTransferringinsightfromnarrow-AItoAGIinvolvesawholelotofcreativethinkingAndsomeofthekeyaspectsofAGImaynotariseinnarrow-AIworkatallTheTechnologicalandScientificContextLeavesusPoisedforDramaticAGIProgress
2008Credit:RayKurzweilGrowthinSupercomputerPowerLogarithmicPlotCredit:RayKurzweilExponentialGrowthofComputingExponentialImprovementofBrainScanningTechnologyMassivelyMultiplayerOnlineGame
(MMOG)Subscriptions
66%yearlygrowthrate14million
WhatWeHaveNow
Fastcomputersinternetworked
DecentvirtualworldsforAIembodimentHalfway-decentrobotbodies
Lotsof
AIalgorithmsandrepresentations
oftenusefulinspecializedareas
oftennotveryscalableontheirown
Abasicunderstandingof
humancognitive
architectureA
cruderbutusefulunderstandingof
brain
structureanddynamics
Atheoreticalunderstandingof
generalintelligence
underconditionsofmassivecomputationalresources
…wemaybeonthevergeofanswering…
BigQuestionsWhat’saWorkableCognitiveCycle?CanAbstractKnowledgeRepresentationsServeAsanAdequateFoundationfortheAdaptiveCreationofContext-SpecificKnowledgeRepresentations?(andifso,whatkind?)MustanAGIWhollyLearnLanguage,orCanLinguisticResources,StatisticalNLPandCommonsenseKB’sHelp?Questioning:Message(truth-query,useful)Questioning:Message(truth-query_1,useful)Existence:Circumstances(truth-query_1,useful)Existence:Circumstances(truth-query,useful)Usefulness:Purpose(useful,intelligence)Usefulness:Entity(useful,this)Communicate_categorization:Category(general,intelligence)Communicate_categorization:Item(general,intelligence)Communicate_categorization:Category(artificial,intelligence)Communicate_categorization:Item(artificial,intelligence)WhatMustaWorldBeThatanAGICanDevelopInIt?CanLogicServeasaScalableFoundationforSensorimotorLearning?HowDoesNeuralLearningRelatetoAbstractFormalModelsofLearning?CanIntegrativeDesignAllowMultipleAIAlgorithmstoQuellEachOthers’CombinatorialExplosions?ProbabilisticEvolutionaryProgramLearningProbabilisticLogicalInferenceEconomicAttentionAllocationforexampleAseriousattemptatpowerful,virtuallyembodiedAGI
TheNovamente
CognitionEngineTechnology:
CognitionEngineNovamenteCognitionEngine(NCE)isanintegrativeAIframeworkaimedatpowerfulartificialgeneralintelligence,andinvolvesauniquesystem-theoreticframeworkincorporating:Knowledgerepresentationusingweighted, labeledhyper-graphsProbabilisticinferenceusingProbabilistic LogicNetworks
ProcedurelearningusingMOSES
probabilisticevolutionarylearning
algorithmEconomicmethodsforattentionallocation andcreditassignment
AIalgorithmsintegratedinsuchawayasto
palliateeachothers’internal
combinatorialexplosionsNCEiscapableofintegratingmultipleformsofcognitiveprocessingandknowledgerepresentation,includinglanguage,quantitativeandrelationaldata,andvirtualagentcontrol/perceptionTechnology:
AtomTableHypergraphKnowledgeRepresentationTechnology:
MOSES&PLNMOSESProbabilisticEvolutionaryLearningCombinesthepoweroftwoleadingAIparadigms:evolutionarylearningprobabilisticlearningBroadapplicabilitywithsuccessfultrackrecordinbioinformatics,textanddataminingandvirtualagentcontrol.ProbabilisticLogicNetworks(PLN)PLNisthefirstgeneral,practicalintegrationofprobabilitytheoryandsymboliclogic.Ithasbroadapplicabilitywithasuccessfultrackrecordinbiotextminingandvirtualagentcontrol.BasedonmathematicsdescribedinProbabilisticLogicNetworks,publishedbySpringerin2008IntelligentVirtualPets
PetBrainincorporatesMOSESlearningtoallowpetstolearntricks,andProbabilisticLogicNetworks(PLN)inferenceregulatesemotion-behaviorinteractions,andallowsgeneralizationbasedonexperience.Novamente’sPetBrainutilizesaspecializedversionofNCEtoprovideunprecedentedintelligentvirtualpetswithindividualpersonalities,andtheabilitytolearnspontaneouslyandthroughtraining.PetsunderstandsimpleEnglish,andfutureversionswillincludelanguagegenerationIntelligentPets:
TrainingExampleNovamente-poweredintelligentpetscanbetaughttodosimpleorcomplextricks-fromsittingtoplayingsoccerorlearningadance-bylearningfromacombinationofencouragement,reinforcementanddemonstration.give“sit”command…claptoreinforce.showexample…successfulsit,great…reinforcedemoteachencourageWhatthismeansforVirtualWorldsandGames
uniquecontenttodifferentiateandattractmoreuserslongerandmoremeaningfulengagementbyusersopportunitiestobuildcommunityplaydatesparadesagilitycompetitionstrainingclasses
socialnaturedrivesviralmarketingeffect?HowDoWeGuideaSuccessfulFuturefortheAGIField??OpenCog.org Anopen-sourceAGIframework,tobelaunchedin2008
SponsoredinitiallybySingularityInstituteforAI Seededwithk
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 七年级数学下册坐标平移与图形对称轴变化关系课件
- 高层建筑施工安全应急方案
- 高层建筑结算支付凭证
- 2025 七年级数学下册数据收集的误差控制方法课件
- 2025 七年级数学下册立方根的定义与实例强化课件
- 高层建筑施工防火提升材料施工要点
- 2025 年国际商会脉冲调查:企业对美国新关税的反应 ICC Pulse Survey 2025 Business reactions to new U.S. tariffs
- 气道护理的感染控制
- 护理实践中的疼痛管理
- 烧伤感染监测与护理干预
- 四川省金太阳2025-2026学年高三上学期11月联考英语试卷(含答案详解)
- 血糖仪项目计划书
- 电气工程项目验收规范及标准
- 个人年度工作计划及职业发展规划-适用于各行各业
- 种植树苗管护合同范本
- 2023年环评工程师考试环境影响评价相关法律法规讲义
- 2025工业智能体应用现状、挑战及对策建议报告-
- 人工流产术后宣教
- 《危险化学品安全法》知识培训
- 2025年新版《高标准农田建设项目竣工验收办法(试行)》
- 转让酒店合同协议书范本
评论
0/150
提交评论