版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题19圆的性质与计算(解答题)题型1:切线的性质和判定1.(2023·江苏盐城·中考真题)如图,在中,是上(异于点,)的一点,恰好经过点,,于点,且平分.
(1)判断与的位置关系,并说明理由;(2)若,,求的半径长.2.(2023·江苏无锡·中考真题)如图,是的直径,与相交于点.过点的的切线,交的延长线于点,.
(1)求的度数;(2)若,求的半径.3.(2023·江苏扬州·中考真题)如图,在中,,点D是上一点,且,点O在上,以点O为圆心的圆经过C、D两点.
(1)试判断直线与的位置关系,并说明理由;(2)若的半径为3,求的长.4.(2022·江苏扬州·中考真题)如图,为的弦,交于点,交过点的直线于点,且.(1)试判断直线与的位置关系,并说明理由;(2)若,求的长.5.(2021·江苏淮安·中考真题)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=,求⊙O的直径.6.(2021·江苏镇江·中考真题)如图1,正方形ABCD的边长为4,点P在边BC上,⊙O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.7.(2021·江苏南通·中考真题)如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.8.(2021·江苏宿迁·中考真题)如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与圆O的位置关系,并说明理由;(2)已知AB=40,求的半径.9.(2021·江苏扬州·中考真题)如图,四边形中,,,,连接,以点B为圆心,长为半径作,交于点E.(1)试判断与的位置关系,并说明理由;(2)若,,求图中阴影部分的面积.10.(2023·江苏镇江·中考真题)如图,将矩形沿对角线翻折,的对应点为点,以矩形的顶点为圆心、为半径画圆,与相切于点,延长交于点,连接交于点.
(1)求证:.(2)当,时,求的长.11.(2023·江苏苏州·中考真题)如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.(1)求证:;(2)若,求的长.12.(2022·江苏苏州·中考真题)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.(1)求证:为的切线;(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.13.(2021·江苏无锡·中考真题)如图,四边形内接于,是的直径,与交于点E,切于点B.(1)求证:;(2)若,,求证:.14.(2021·江苏盐城·中考真题)如图,为线段上一点,以为圆心长为半径的⊙O交于点,点在⊙O上,连接,满足.(1)求证:是⊙O的切线;(2)若,求的值.
15.(2021·江苏连云港·中考真题)如图,中,,以点C为圆心,为半径作,D为上一点,连接、,,平分.(1)求证:是的切线;(2)延长、相交于点E,若,求的值.题型2:圆锥的侧面积、扇形的面积问题16.(2022·江苏徐州·中考真题)如图,点A、B、C在圆O上,,直线,,点O在BD上.(1)判断直线AD与的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.17.(2022·江苏淮安·中考真题)如图,是的内接三角形,,经过圆心交于点,连接,.(1)判断直线与的位置关系,并说明理由;(2)若,求图中阴影部分的面积.18.(2022·江苏宿迁·中考真题)如图,在中,∠=45°,,以为直径的⊙与边交于点.(1)判断直线与⊙的位置关系,并说明理由;(2)若,求图中阴影部分的面积.19.(2023·江苏南通·中考真题)如图,等腰三角形的顶角,和底边相切于点,并与两腰,分别相交于,两点,连接,.
(1)求证:四边形是菱形;(2)若的半径为2,求图中阴影部分的面积.20.(2023·江苏宿迁·中考真题)(1)如图,是的直径,与交于点F,弦平分,点E在上,连接、,________.求证:________.从①与相切;②中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程.(2)在(1)的前提下,若,,求阴影部分的面积.
21.(2022·江苏南通·中考真题)如图,四边形内接于,为的直径,平分,点E在的延长线上,连接.(1)求直径的长;(2)若,计算图中阴影部分的面积.题型3:有关圆的尺规作图22.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠∠=∠=90°,所以∠+∠=90°,所以∠=90°,即⊥.(1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.
23.(2023·江苏无锡·中考真题)如图,已知,点M是上的一个定点.
(1)尺规作图:请在图1中作,使得与射线相切于点M,同时与相切,切点记为N;(2)在(1)的条件下,若,则所作的的劣弧与所围成图形的面积是_________.24.(2023·江苏徐州·中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.25.(2023·江苏连云港·中考真题)如图,在中,,以为直径的交边于点,连接,过点作.(1)请用无刻度的直尺和圆规作图:过点作的切线,交于点;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:.26.(2022·江苏常州·中考真题)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、.(1)沿、剪下,则是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点、和直径上的点、.已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形.小明的猜想是否正确?请说明理由.
27.(2022·江苏扬州·中考真题)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)题型4:圆与函数的综合28.(2023·江苏苏州·中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.
(1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.29.(2022·江苏盐城·中考真题)【发现问题】小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点,为正整数,以为直径画,是否存在所描的点在上.若存在,求的值;若不存在,说明理由.
题型5:圆的性质、圆锥的综合探究应用30.(2022·江苏泰州·中考真题)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动矩形ABCD随之运动,运动时间为t秒(1)如图2,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交,设这两个交点为G、H连接OG,OH.若∠GOH为直角,求此时t的值.31.(2023·江苏泰州·中考真题)已知:A、B为圆上两定点,点C在该圆上,为所对的圆周角.知识回顾(1)如图①,中,B、C位于直线异侧,.①求的度数;②若的半径为5,,求的长;逆向思考(2)如图②,P为圆内一点,且,,.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若,点C在位于直线上方部分的圆弧上运动.点D在上,满足的所有点D中,必有一个点的位置始终不变.请证明.
32.(2021·江苏泰州·中考真题)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求的值;(2)用含m的代数式表示,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.
33.(2022·江苏镇江·中考真题)如图1是一张圆凳的造型,已知这张圆凳的上、下底面圆的直径都是,高为.它被平行于上、下底面的平面所截得的横截面都是圆.小明画出了它的主视图,是由上、下底面圆的直径、以及、组成的轴对称图形,直线为对称轴,点、分别是、的中点,如图2,他又画出了所在的扇形并度量出扇形的圆心角,发现并证明了点在上.请你继续完成长的计算.参考数据:,,,,,.
34.(2021·江苏南京·中考真题)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设的长为a,点B在母线上,.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.
35.(2021·江苏扬州·中考真题)在一次数学探究活动中,李老师设计了一份活动单:已知线段,使用作图工具作,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以为弦的圆弧上(点B、C除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为___________;②面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为,请你利用图1证明;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形的边长,,点P在直线的左侧,且.①线段长的最小值为_______;②若,则线段长为________.
专题19圆的性质与计算(解答题)题型1:切线的性质和判定1.(2023·江苏盐城·中考真题)如图,在中,是上(异于点,)的一点,恰好经过点,,于点,且平分.(1)判断与的位置关系,并说明理由;(2)若,,求的半径长.【答案】(1)见解析(2)的半径长为.【分析】(1)连接,证明,即可证得,从而证得是圆的切线;(2)设,则,利用勾股定理求得,推出,利用相似三角形的性质列得比例式,据此求解即可.【详解】(1)证明:连接,如下图所示,
∵是的平分线,∴,又∵,∴,∴,∴,∴,即,又∵过半径的外端点B,∴与相切;(2)解:设,则,∵在中,,,,∴,∵,∴,∴,即,解得.故的半径长为.2.(2023·江苏无锡·中考真题)如图,是的直径,与相交于点.过点的圆O的切线,交的延长线于点,.(1)求的度数;(2)若,求的半径.【答案】(1)(2)【分析】(1)连接,根据为的切线,则,由,则,根据圆周角定理可得,又,根据等边对等角以及三角形内角和定理即可求解;(2)证明,根据相似三角形的性质,代入数据即可求解.【详解】(1)如图,连接.
为的切线,.,.,.,.(2)如图,连接,,,.∵,,且,,,即,,,即半径为.3.(2023·江苏扬州·中考真题)如图,在中,,点D是上一点,且,点O在上,以点O为圆心的圆经过C、D两点.
(1)试判断直线与的位置关系,并说明理由;(2)若的半径为3,求的长.【答案】(1)直线与相切,理由见解析(2)6【分析】(1)连接,根据圆周角定理,得到,进而得到,即可得出与相切;(2)解直角,求出的长,进而求出的长,再解直角三角形,求出的长即可.【详解】(1)解:直线与相切,理由如下:连接,则:,
∵,即:,∴,∵,∴,∴,∴,∵为的半径,∴直线与相切;(2)解:∵,的半径为3,∴,∴,∴,∵,∴,设:,则:,∴,∴.4.(2022·江苏扬州·中考真题)如图,为的弦,交于点,交过点的直线于点,且.(1)试判断直线与的位置关系,并说明理由;(2)若,求的长.【答案】(1)相切,证明见详解(2)6【分析】(1)连接OB,根据等腰三角形的性质得出,,从而求出,再根据切线的判定得出结论;(2)分别作交AB于点M,交AB于N,根据求出OP,AP的长,利用垂径定理求出AB的长,进而求出BP的长,然后在等腰三角形CPB中求解CB即可.【详解】(1)证明:连接OB,如图所示:,,,,,,即,,,为半径,经过点O,直线与的位置关系是相切.(2)分别作交AB于点M,交AB于N,如图所示:,,,,,,,,,,.5.(2021·江苏淮安·中考真题)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=,求⊙O的直径.【答案】(1)相切,理由见解析;(2)【分析】(1)连接DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切;(2)根据勾股定理和相似三角形的性质即可得到结论.【详解】解:(1)证明:连接DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切;(2)由(1)得,∠CDB=90°,∵CE=EB,∴DE=BC,∴BC=5,∴BD===4,∵∠BCA=∠BDC=90°,∠B=∠B,∴△BCA∽△BDC,∴=,∴=,∴AC=,∴⊙O直径的长为.6.(2021·江苏镇江·中考真题)如图1,正方形ABCD的边长为4,点P在边BC上,⊙O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.【答案】(1)相切,见解析;(2)【分析】(1)如图1中,连接AP,过点O作OH⊥AB于H,交CD于E.求出OE的长,与半径半径,可得结论.(2)如图2中,延长AE交BC的延长线于T,连接PQ.利用面积法求出BP,可得结论.【详解】解:(1)如图1﹣1中,连接AP,过点O作OH⊥AB于H,交CD于E.∵四边形ABCD是正方形,∴AB=AD=4,∠ABP=90°,∴AP===5,∵OH⊥AB,∴AH=HB,∵OA=OP,AH=HB,∴OH=PB=,∵∠D=∠DAH=∠AHE=90°,∴四边形AHED是矩形,∴OE⊥CE,EH=AD=4,∴OE=EH=OH=4﹣=,∴OE=OP,∴直线CD与⊙O相切.(2)如图2中,延长AE交BC的延长线于T,连接PQ.∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,∴△ADE≌△TCE(ASA),∴AD=CT=4,∴BT=BC+CT=4+4=8,∵∠ABT=90°,∴AT===4,∵AP是直径,∴∠AQP=90°,∵PA平分∠EAB,PQ⊥AQ,PB⊥AB,∴PB=PQ,设PB=PQ=x,∵S△ABT=S△ABP+S△APT,∴×4×8=×4×x+×4×x,∴x=2﹣2,∴tan∠EAP=tan∠PAB==.7.(2021·江苏南通·中考真题)如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.【答案】(1)55°;(2).【分析】(1)连接OC,如图,利用切线的性质得到OC⊥CD,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度数,即可求解;(2)利用(1)的结论先求得∠AEO∠EAO70°,再平行线的性质求得∠COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴的长为.8.(2021·江苏宿迁·中考真题)如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与圆O的位置关系,并说明理由;(2)已知AB=40,求的半径.【答案】(1)直线CD与圆O相切,理由见解析;(2)【分析】(1)连接证明可得从而可得答案;(2)由设则再求解再表示再利用列方程解方程,可得答案.【详解】解:(1)直线CD与圆O相切,理由如下:如图,连接为的半径,是的切线.(2)设则(负根舍去)的半径为:9.(2021·江苏扬州·中考真题)如图,四边形中,,,,连接,以点B为圆心,长为半径作,交于点E.(1)试判断与的位置关系,并说明理由;(2)若,,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF==2,∴阴影部分的面积=S△ABD-S扇形ABE==.10.(2023·江苏镇江·中考真题)如图,将矩形沿对角线翻折,的对应点为点,以矩形的顶点为圆心、为半径画圆,与相切于点,延长交于点,连接交于点.(1)求证:.(2)当,时,求的长.【答案】(1)见解析(2)【分析】(1)连接,由切线的性质得,则,由矩形的性质得,再由直角三角形两锐角互余得,根据对顶角相等和同圆的半径相等得,,然后由等角的余角相等得,最后由等角对等边得出结论;(2)由锐角三角函数得,,得,由翻折得,由得,再由矩形对边相等得,最后在中解直角三角形即可得出结论.【详解】(1)证明:如图,连接.
∵与相切于点E,∴,∴.∵四边形是矩形,∴,∴.∵,∴.∵,∴,∴.(2)解:在中,,,∴,∴,∵四边形是矩形,∴,由翻折可知,,∵四边形是矩形,∴,在中,,∴.11.(2023·江苏苏州·中考真题)如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.(1)求证:;(2)若,求的长.【答案】(1)证明见解析(2)【分析】(1)分别证明,,从而可得结论;(2)求解,,可得,证明,设,则,,证明,可得,可得,,,从而可得答案.【详解】(1)证明:∵是的直径,,∴,∵,∴.(2)∵,,∴,,∵,∴,∵,∴,∴,设,则,,∵,,∴,∴,∴,则,∴,∴,∴.12.(2022·江苏苏州·中考真题)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.(1)求证:为的切线;(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.【答案】(1)见解析(2)【分析】(1)方法一:如图1,连接OC,OD.由,,可得,由是的直径,D是的中点,,进而可得,即可证明CF为的切线;方法二:如图2,连接OC,BC.设.同方法一证明,即可证明CF为的切线;(2)方法一:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,勾股定理求得,证明,得出,根据,求得,进而求得,根据勾股定理即可求得;方法二:如图4,连接AD.由方法一,得.,D是的中点,可得,根据勾股定理即可求得.【详解】(1)(1)方法一:如图1,连接OC,OD.∵,∴.∵,∴.
∵,∴.∵是的直径,D是的中点,∴.∴.∴,即.∴.∴CF为的切线.方法二:如图2,连接OC,BC.设.∵AB是的直径,D是的中点,∴.∴.∵,∴.
∴.∵,∴.∴.∵AB是的直径,∴.∴.∴,即.∴.∴CF为的切线.(2)解:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,,解之得.∵,∴.
∵,∴.∴.∴.∵G为BD中点,∴.∴,.∴.∴.13.(2021·江苏无锡·中考真题)如图,四边形内接于,是的直径,与交于点E,切于点B.(1)求证:;(2)若,,求证:.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵是的直径,∴∠ABC=90°,∵切于点B,∴∠OBP=90°,∴,∴;(2)∵,,∴,∵OB=OC,∴,∴∠AOB=20°+20°=40°,∵OB=OA,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=∠AOB=20°,∵是的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB,∵,∴,∴.14.(2021·江苏盐城·中考真题)如图,为线段上一点,以为圆心长为半径的⊙O交于点,点在⊙O上,连接,满足.(1)求证:是⊙O的切线;(2)若,求的值.【答案】(1)见解析;(2)【分析】(1)连接,把转化为比例式,利用三角形相似证明即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接∵∴,又∵∠P=∠P,∴∴,∵∴又∵∴∴已知是上的点,AB是直径,∴,∴∴,∴PC是圆的切线;(2)设,则,∴在中∵,,∴已知,∴.15.(2021·江苏连云港·中考真题)如图,中,,以点C为圆心,为半径作,D为上一点,连接、,,平分.(1)求证:是的切线;(2)延长、相交于点E,若,求的值.【答案】(1)见解析;(2)【分析】(1)利用SAS证明,可得,即可得证;(2)由已知条件可得,可得出,进而得出即可求得;【详解】(1)∵平分,∴.∵,,∴.∴.∴,∴是的切线.(2)由(1)可知,,又,∴.∵,且,∴,∴.∵,∴.∵∴题型2:圆锥的侧面积、扇形的面积问题16.(2022·江苏徐州·中考真题)如图,点A、B、C在圆O上,,直线,,点O在BD上.(1)判断直线AD与圆O的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.【答案】(1)直线AD与圆O相切,理由见解析(2)【分析】(1)连接OA,根据和AB=AD,可得∠DBC=∠ABD=∠D=30°,从而得到∠BAD=120°,再由OA=OB,可得∠BAO=∠ABD=30°,从而得到∠OAD=90°,即可求解;(2)连接OC,作OH⊥BC于H,根据垂径定理可得,进而得到,再根据阴影部分的面积为,即可求解.【详解】(1)解:直线AD与圆O相切,理由如下:如图,连接OA,∵,∴∠D=∠DBC,∵AB=AD,∴∠D=∠ABD,∵,∴∠DBC=∠ABD=∠D=30°,∴∠BAD=120°,∵OA=OB,∴∠BAO=∠ABD=30°,∴∠OAD=90°,∴OA⊥AD,∵OA是圆的半径,∴直线AD与园O相切,(2)解:如图,连接OC,作OH⊥BC于H,∵OB=OC=6,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴,∴,∴,∴扇形BOC的面积为,∵,∴阴影部分的面积为.17.(2022·江苏淮安·中考真题)如图,是的内接三角形,,经过圆心交于点,连接,.(1)判断直线与的位置关系,并说明理由;(2)若,求图中阴影部分的面积.【答案】(1)直线与相切,理由见解析(2)图中阴影部分的面积【分析】(1)连接,根据圆周角定理得到,连接,根据等边三角形的性质得到,根据切线的判定定理即可得到结论;(2)根据圆周角定理得到,解直角三角形得到,根据扇形和三角形的面积公式即可得到结论.【详解】(1)解:直线与相切,理由:如图,连接,∵,∴,连接,∵,∴是等边三角形,∴,∵,∴,∴,∵是的半径,∴直线与相切;(2)解:如(1)中图,∵是的直径,∴,∵,∴,∴,∴,∵,∴,∴,∴图中阴影部分的面积.18.(2022·江苏宿迁·中考真题)如图,在中,∠=45°,,以为直径的⊙与边交于点.(1)判断直线与⊙的位置关系,并说明理由;(2)若,求图中阴影部分的面积.【答案】(1)证明见解析(2)【分析】(1)利用等腰三角形的性质与三角形的内角和定理证明从而可得结论;(2)如图,连接OD,先证明再利用阴影部分的面积等于三角形ABC的面积减去三角形BOD的面积,减去扇形AOD的面积即可.【详解】(1)证明:∠=45°,,即在上,为的切线.(2)如图,连接OD,,,,,,,.19.(2023·江苏南通·中考真题)如图,等腰三角形的顶角,和底边相切于点,并与两腰,分别相交于,两点,连接,.(1)求证:四边形是菱形;(2)若的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)【分析】(1)连接,根据切线的性质可得,然后利用等腰三角形的三线合一性质可得,从而可得和都是等边三角形,最后利用等边三角形的性质可得,即可解答;(2)连接交于点,利用菱形的性质可得,,,然后在中,利用勾股定理求出的长,从而求出的长,最后根据图中阴影部分的面积扇形的面积菱形的面积,进行计算即可解答.【详解】(1)证明:连接,
和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形;(2)解:连接交于点,
四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.20.(2023·江苏宿迁·中考真题)(1)如图,是的直径,与交于点F,弦平分,点E在上,连接、,________.求证:________.从①与相切;②中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程.(2)在(1)的前提下,若,,求阴影部分的面积.【答案】(1)②①,证明见解析(或①②,证明见解析)(2)【分析】(1)一:已知条件为②,结论为①与相切;连接,先证出,再根据平行线的性质可得,然后根据圆的切线的判定即可得证;二:已知条件为①与相切,结论为②;连接,先证出,再根据圆的切线的性质可得,然后根据平行线的性质即可得证;(2)连接,先解直角三角形求出的长,再根据等边三角形的判定与性质可得的长,从而可得的长,然后根据圆周角定理可得,最后根据阴影部分的面积等于直角梯形的面积减去扇形的面积即可得.【详解】解:(1)一:已知条件为②,结论为①与相切,证明如下:如图,连接,
,,弦平分,,,,,,又是的半径,与相切;二:已知条件为①与相切,结论为②,证明如下:如图,连接,
,,弦平分,,,,与相切,,;(2)如图,连接,
,,,,,又,,是等边三角形,,,由圆周角定理得:,则阴影部分的面积为.21.(2022·江苏南通·中考真题)如图,四边形内接于,为的直径,平分,点E在的延长线上,连接.(1)求直径的长;(2)若,计算图中阴影部分的面积.【答案】(1)4(2)6【分析】(1)设辅助线,利用直径、角平分线的性质得出的度数,利用圆周角与圆心角的关系得出的度数,根据半径与直径的关系,结合勾股定理即可得出结论.(2)由(1)已知,得出的度数,根据圆周角的性质结合得出,再根据直径、等腰直角三角形的性质得出的值,进而利用直角三角形面积公式求出,由阴影部分面积可知即为所求.【详解】(1)解:如图所示,连接,为的直径,平分,,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,.,...题型3:有关圆的尺规作图22.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠∠=∠=90°,所以∠+∠=90°,所以∠=90°,即⊥.(1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.【答案】(1);见解析(2)见解析【分析】(1)取格点,作射线交于点P,则根据垂径定理可知,点P即为所求作;(2)取格点I,连接MI交AB于点P,点P即为所求作.利用正切函数证得∠FMI=∠MNA,利用圆周角定理证得∠B=∠MNA,再推出△PAM∽△MAB,即可证明结论.【详解】(1)解:【操作探究】在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠∠=∠=90°,所以∠+∠=90°,所以∠=90°,即⊥.故答案为:;取格点,作射线交于点P,点P即为所求作;(2)解:取格点I,连接MI交AB于点P,点P即为所求作;证明:作直径AN,连接BM、MN,在Rt△FMI中,,在Rt△MNA中,,所以.∴∠FMI=∠MNA,∵∠B=∠MNA,∴∠AMP=∠B,∵∠PAM=∠MAB,∴△PAM∽△MAB,∴,∴=·.23.(2023·江苏无锡·中考真题)如图,已知,点M是上的一个定点.
(1)尺规作图:请在图1中作,使得与射线相切于点M,同时与相切,切点记为N;(2)在(1)的条件下,若,则所作的的劣弧与所围成图形的面积是_________.【答案】(1)见解析(2)【分析】(1)先作的平分线,再过M点作的垂线交于点O,接着过O点作于N点,然后以O点为圆心,为半径作圆,则满足条件;(2)先利用切线的性质得到,,根据切线长定理得到,则,再利用含30度角的直角三角形三边的关系计算出,然后根据扇形的面积公式,利用的劣弧与所围成图形的面积进行计算.【详解】(1)解:如图,为所作;
;(2)解:∵和为的切线,∴,,,∴,∴,在中,∴,∴的劣弧与所围成图形的面积.故答案为:.24.(2023·江苏徐州·中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为;环的“肉”的面积为,∴它们的面积之比为;故答案为;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A、B、C,则分别以A、B为圆心,大于长为半径画弧,交于两点,连接这两点,同理可画出线段的垂直平分线,线段的垂直平分线的交点即为圆心O,过圆心O画一条直径,以O为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可
由作图可知满足比例关系为的关系;②按照①中作出圆的圆心O,过圆心画一条直径,过点A作一条射线,然后以A为圆心,适当长为半径画弧,把射线三等分,交点分别为C、D、E,连接,然后分别过点C、D作的平行线,交于点F、G,进而以为直径画圆,则问题得解;如图所示:
25.(2023·江苏连云港·中考真题)如图,在中,,以为直径的交边于点,连接,过点作.(1)请用无刻度的直尺和圆规作图:过点作的切线,交于点;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:.【分析】(1)根据尺规作图,过点作的垂线,交于点,即可求解;(2)根据题意切线的性质以及直径所对的圆周角是直角,证明,根据平行线的性质以及等腰三角形的性质得出,进而证明,即可得证.【详解】(1)解:如图所示.
(2)∵,∴.又∵,∴,∴.∵点在以为直径的圆上,∴,∴.又∵为的切线,∴.∵,∴,∴,∴.∵在和中,∴.∴.26.(2022·江苏常州·中考真题)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、.(1)沿、剪下,则是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点、和直径上的点、.已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形.小明的猜想是否正确?请说明理由.【答案】(1)直角(2)见详解(3)小明的猜想正确,理由见详解【分析】(1)AB是圆的直径,根据圆周角定理可知∠ACB=90°,即可作答;(2)以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可;(3)当点C靠近点A时,设,,可证,推出,分别以M,N为圆心,MN为半径作弧交AB于点P,Q,可得,进而可证四边形MNQP是菱形;当点C靠近点B时,同理可证.【详解】(1)解:如图,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB是直角,即△ABC是直角三角形,故答案为:直角;(2)解:以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可,作图如下:由作图可知AE=EF=FH=HG=OA=AB=6,即四边形EFHG是边长为6cm的菱形;(3)解:小明的猜想正确,理由如下:如图,当点C靠近点A时,设,,∴,∴,∴,∴.分别以M,N为圆心,MN为半径作弧交AB于点P,Q,作于点D,于点E,∴.∵,,,∴,在和中,,∴,∴,∴,又∵,∴四边形MNQP是平行四边形,又∵,∴四边形MNQP是菱形;同理,如图,当点C靠近点B时,采样相同方法可以得到四边形MNQP是菱形,故小明的猜想正确.27.(2022·江苏扬州·中考真题)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【答案】见解析【分析】【初步尝试】如图1,作∠AOB的角平分线所在直线即为所求;【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆,与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧即为所求.【详解】【初步尝试】如图所示,作∠AOB的角平分线所在直线OP即为所求;【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆,与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧CD即为所求.题型4:圆与函数的综合28.(2023·江苏苏州·中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.(1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.【答案】(1)(2)或或【分析】(1)令求得点的横坐标即可解答;(2)由题意可得抛物线的对称轴为,设,则;如图连接,则,进而可得切线长为边长的正方形的面积为;过点P作轴,垂足为H,可得;由题意可得,解得;然后再分当点M在点N的上方和下方两种情况解答即可.【详解】(1)解:令,则有:,解得:或,∴.(2)解:∵抛物线过∴抛物线的对称轴为,设,∵,∴,如图:连接,则,∴,∴切线为边长的正方形的面积为,过点P作轴,垂足为H,则:,∴∵,∴,
假设过点,则有以下两种情况:①如图1:当点M在点N的上方,即
∴,解得:或,∵∴;②如图2:当点M在点N的上方,即
∴,解得:,∵∴;综上,或.∴当不经过点时,或或.29.(2022·江苏盐城·中考真题)【发现问题】小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点,为正整数,以为直径画,是否存在所描的点在上.若存在,求的值;若不存在,说明理由.【答案】(1)或(2)成立,理由见解析(3)存在,4【分析】(1)先画出图形,再结合实际操作可得再利用勾股定理求解AC,BC,从而可得答案;(2)解法1:设半径为的圆与直线的交点为.利用勾股定理可得,即,可得,可得上,从而验证猜想;解法2:设半径为的圆与直线交点为,可得,解方程可得.则,再消去,可得,从而验证猜想;(3)如图,设所描的点在上,由,建立方程,整理得结合,都是正整数,从而可得答案.【详解】(1)解:如图,∴∴故答案为:或(2)小明的猜想成立.解法1:如图,设半径为的圆与直线的交点为.因为,所以,即,所以,所以上,小明的猜想成立.解法2:设半径为的圆与直线交点为,因为,所以,解得,所以.,消去,得,点在抛物线上,小明的猜想成立.(3)存在所描的点在上,理由:如图,设所描的点在上,则,因为,所以,整理得,因为,都是正整数,所以只有,满足要求.因此,存在唯一满足要求的,其值是4.题型5:圆的性质、圆锥的综合探究应用30.(2022·江苏泰州·中考真题)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动矩形ABCD随之运动,运动时间为t秒
(1)如图2,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交,设这两个交点为G、H连接OG,OH.若∠GOH为直角,求此时t的值.【答案】(1)(2)8或9秒【分析】(1)通过计算当t=2.5时EB=BO,进而得到△MBE≌△MBO,判断出△MEO为等边三角形得到∠EOM=60°,然后根据弧长公式求解;(2)通过判定△GAO≌△HBO,然后利用全等三角形的性质分析求解.【详解】(1)解:设BC与⊙O交于点M,如下图所示:
当t=2.5时,BE=2.5,∵EF=10,∴OE=EF=5,∴OB=2.5,∴EB=OB,在正方形ABCD中,∠EBM=∠OBM=90°,且MB=MB,∴△MBE≌△MBO(SAS),∴ME=MO,∴ME=EO=MO,∴△MOE是等边三角形,∴∠EOM=60°,∴.(2)解:连接GO和HO,如下图所示:
∵∠GOH=90°,∴∠AOG+∠BOH=90°,∵∠AOG+∠AGO=90°,∴∠AGO=∠BOH,在△AGO和△OBH中,,∴△AGO≌△BOH(AAS),∴AG=OB=BE-EO=t-5,∵AB=7,∴AE=BE-AB=t-7,∴AO=EO-AE=5-(t-7)=12-t,在Rt△AGO中,AG2+AO2=OG2,∴(t-5)2+(12-t)2=52,解得:t1=8,t2=9,即t的值为8或9秒.31.(2023·江苏泰州·中考真题)已知:A、B为圆上两定点,点C在该圆上,为所对的圆周角.知识回顾(1)如图①,中,B、C位于直线异侧,.①求的度数;②若的半径为5,,求的长;逆向思考(2)如图②,P为圆内一点,且,,.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若,点C在位于直线上方部分的圆弧上运动.点D在上,满足的所有点D中,必有一个点的位置始终不变.请证明.【答案】(1)①;②;(2)见解析;(3)见解析【分析】(1)①根据,结合圆周角定理求的度数;②构造直角三角形;(2)只要说明点到圆上、和另一点的距离相等即可;(3)根据,构造一条线段等于,利用三角形全等来说明此线段和相等.【详解】(1)解:①,,,.②连接,过作,垂足为,
,,是等腰直角三角形,且,,,是等腰直角三角形,,在直角三角形中,,.(2)证明:延长交圆于点,则,
,,,,,,,为该圆的圆心.(3)证明:过作的垂线交的延长线于点,连接,延长交圆于点,连接,,
,,是等腰直角三角形,,,,,是直径,,,,,,,,必有一个点的位置始终不变,点即为所求.32.(2021·江苏泰州·中考真题)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求的值;(2)用含m的代数式表示,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.【答案】(1)①见解析;②2;(2);(3)存在半径为1的圆,45°【分析】(1)①连接OD,则易得CD垂直平分线段OA,从而OD=AD,由OA=OD,即可得△OAD是等边三角形,从而可得结论;②连接AQ,由圆周角定理得:∠ABQ=∠ADH,从而其余弦值相等,因此可得,由①可得AB、AD的值,从而可得结论;(2)连接AQ、BD,首先与(1)中的②相同,有,由△APD∽△ADB,可求得AD的长,从而求得结果;(3)由(2)的结论可得:,从而BQ2﹣2DH2+PB2当m=1时,即可得是一个定值,从而可求得∠Q的值.【详解】(1)①如图,连接OD,则OA=OD∵AB=PA+PB=1+3=4∴OA=∴OP=AP=1即点P是线段OA的中点∵CD⊥AB∴CD垂直平分线段OA∴OD=AD∴OA=OD=AD即△OAD是等边三角形∴∠OAD=60°
②连接AQ∵AB是直径∴AQ⊥BQ根据圆周角定理得:∠ABQ=∠ADH,∴∵AH⊥DQ在Rt△ABQ和Rt△ADH中∴∵AD=OA=2,AB=4∴(2)连接AQ、BD与(1)中的②相同,有∵AB是直径∴AD⊥BD∴∠DAB+∠ADP=∠DAB+∠ABD=90°∴∠ADP=∠ABD∴Rt△APD∽Rt△ADB∴∵AB=PA+PB=1+m∴∴(3)由(2)知,∴BQ=即∴BQ2﹣2DH2+PB2=当m=1时,BQ2﹣2DH2+PB2是一个定值,且这个定值为1,此时PA=PB=1,即点P与圆心O重合∵CD⊥AB,OA=OD=1∴△AOD是等腰直角三角形∴∠OAD=45°∵∠OAD与∠Q对着同一条弧
∴∠Q=∠OAD=45°故存在半径为1的圆,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值1,此时∠Q的度数为45.33.(2022·江苏镇江·中考真题)如图1是一张圆凳的造型,已知这张圆凳的上、下底面圆的直径都是,高为.它被平行于上、下底面的平面所截得的横截面都是圆.小明画出了它的主视图,是由上、下底面圆的直径、以及、组成的轴对称图形,直线为对称轴,点、分别是、的中点,如图2,他又画出了所在的扇形并度量出扇形的圆心角,发现并证明了点在上.请你继续完成长的计算.参考数据:,,,,,.【答案】42cm【分析】连接,交于点.设直线交于点,根据圆周角定理可得,解,得出,进而求得的长,即可求解.【详解】解:连接,交于点.设直线交于点.∵是的中点,点在上,∴.在中,∵,,∴,.∵直线是对称轴,∴,,,∴.∴.∴,.在中,,即,则.∵,即,则.∴.∵该图形为轴对称图形,张圆凳的上、下底面圆的直径都是,,∴.∴.34.(2021·江苏南京·中考真题)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设的长为a,点B在母线上,.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.【答案】(1)作图如图所示;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年无人机考试题库及答案
- 2026年江西外语外贸职业学院高职单招职业适应性考试备考题库有答案解析
- 2026年重庆电子工程职业学院高职单招职业适应性考试备考题库有答案解析
- 2026年皖西卫生职业学院单招综合素质笔试备考试题带答案解析
- 2026年徐州生物工程职业技术学院高职单招职业适应性测试备考题库有答案解析
- 2025年重庆安防职业学院教师招聘真题
- 2024年宜兴市市直机关遴选考试真题
- 公司送餐外包协议书
- 黑河医疗器械质量协议书
- 未来五年粉条企业数字化转型与智慧升级战略分析研究报告
- 2026年新《煤矿安全规程》培训考试题库(附答案)
- 继续教育部门述职报告
- 鱼塘测量施工方案
- 湖北省宜昌市秭归县2026届物理八年级第一学期期末学业水平测试模拟试题含解析
- 重庆水利安全员c证考试题库和及答案解析
- 2025秋期版国开电大本科《理工英语4》一平台综合测试形考任务在线形考试题及答案
- 简易混凝土地坪施工方案
- 介绍数字孪生技术
- 水泵维修安全知识培训课件
- DBJT15-147-2018 建筑智能工程施工、检测与验收规范
- 《智能制造技术基础》课件
评论
0/150
提交评论