版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山市峨边西河中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,,且,则的值为(
)A.
3
B.4
C.5
D.6参考答案:C2.如图,在正方体AC1中,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心 B.AH的延长线经过点C1C.AH垂直平面CB1D1 D.直线AH和BB1所成角为45°参考答案:D【考点】空间中直线与平面之间的位置关系;棱柱的结构特征;空间中直线与直线之间的位置关系.【专题】证明题;综合题.【分析】因为三棱锥A﹣A1BD是正三棱锥,所以H是正三角形﹣A1BD的中心,故A正确;根据正三棱锥A﹣A1BD和正三棱锥C1﹣A1BD的高线都经过H点,结合垂线的唯一性可得B正确;根据平面A1BD∥平面CB1D1,结合面面平行的性质,得到C正确;通过计算可得直线AH和BB1所成角为arccos,故D不正确.【解答】解:对于A,因为三棱锥A﹣A1BD是正三棱锥,故顶点A在底面的射影是底面正三角形的中心,所以点H是也是△A1BD的垂心,故A正确;对于B,因为三棱锥C1﹣A1BD是正三棱锥,而H是底面的中心,故C1H是正三棱锥C1﹣A1BD的高线,因为经过点H与平面A1BD垂直的直线有且只有一条,故A、H、C1三点共线,即AH的延长线经过点C1,故B正确;对于C,因为平面A1BD∥平面CB1D1,而AH垂直平面A1BD,所以根据面面平行的性质,可得AH垂直平面CB1D1,故C正确;对于D,可在正三棱锥A﹣A1BD中,算出cos∠A1AH=,结合AA1∥BB1,可得直线AH和BB1所成角为arccos,故D不正确.故选D【点评】本题给出正方体模型,要我们判断几个命题的真假,着重考查了空间的平行与垂直的位置关系和正三棱锥的性质等知识点,属于基础题.3.若的焦点与椭圆的右焦点重合,则抛物线的准线方程为()
A. B.
C.
D.参考答案:C略4.下面的四个不等式:①;②;③
;④.其中不成立的有(
)
A.1个
B.2个
C.3个
D.4个参考答案:A5.执行如图所示的程序框图,若输出k的值为10,则判断框内可填入的条件是(
)A.
B.
C.
D.参考答案:D输入参数,第一次循环:;第二次循环:;第三次循环:;第四次循环:;第五次循环:;退出循环,输出结果,故第四次循环完后,满足判断内的条件,而第五次循环完后,不满足判断内条件,故判断内填入的条件是,故选D.
6.设实数a,b满足|a|>|b|,则“a﹣b>0”是“a+b>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】实数a,b满足|a|>|b|?(a+b)(a﹣b)>0,即可判断出关系.【解答】解:实数a,b满足|a|>|b|?(a+b)(a﹣b)>0,则“a﹣b>0”是“a+b>0”的充要条件,故选:C.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.已知x,y满足,则(x﹣1)2+(y﹣1)2的取值范围是()A.[5,25] B.[1,25] C. D.参考答案:C【考点】7C:简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义求解即可.【解答】解:x,y满足的可行域如图:(x﹣1)2+(y﹣1)2的几何意义是可行域内的点与D(1,1)的距离的平方,由图形可知DP距离的平方最小,DA距离的平方最大.由,解得A(3,﹣3).(x﹣1)2+(y﹣1)2的最小值为:=.(x﹣1)2+(y﹣1)2的最大值为:(3﹣1)2+(﹣3﹣1)2=20.(x﹣1)2+(y﹣1)2的取值范围是[,20]故选:C.8.下列函数中,与函数是同一个函数的是
(
)A.
B.
C.
D.参考答案:B略9.设是服从二项分布的随机变量,又,,则n与p的值分别为(
)A.60,
B.60,
C.50,
D.50,参考答案:B由,得,,则,.10.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是A.=-10x+200
B.=10x+200C.=-10x-200
D.=10x-200参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.由1,2,3,4,5,6组成无重复数字且1,3都不与5相邻的六位偶数的个数是()A.72
B.96
C.108
D.144参考答案:C12.在区间上任意取一个数x,则的概率为
.参考答案:略13.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,回答问题:若函数g(x)=x3-x2+3x-,则g()+g()+g()+g()+…+g()=
.参考答案:略14.
已知双曲线的渐近线方程为,则该双曲线的离心率为.
参考答案:略15.已知变数x,y满足约束条件,目标函数z=x+ay(a≥0)仅在点(2,2)处取得最大值,则a的取值范围为.参考答案:【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.【解答】解:作出不等式对应的平面区域,当a=0时,z=x,即x=z,此时不成立.由z=x+ay得y=﹣x+,要使目标函数z=x+ay(a≥0)仅在点(2,2)处取得最大值,则阴影部分区域在直线y=﹣x+的下方,即目标函数的斜率k=﹣,满足k>kAC,即﹣>﹣3,∵a>0,∴a>,即a的取值范围为,故答案为:.16.已知双曲线的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的取值范围为______________.参考答案:(1,]略17.双曲线的右焦点坐标是;焦点到渐近线的距离为.参考答案:(2,0),。【考点】双曲线的简单性质.【专题】计算题;方程思想;定义法;圆锥曲线的定义、性质与方程.【分析】根据双曲线的方程解求出焦点坐标,再根据点到直线的距离公式即可求出焦点到渐近线的距离.【解答】解:双曲线,∴a2=1,b2=3,∴c2=a2+b2=4,∴c=2,∵双曲线的焦点在x轴上,∴双曲线的右焦点坐标是(2,0),∴双曲线的渐近线方程为y=±x,即x﹣y=0,∴焦点到渐近线的距离d==,故答案为:(2,0),【点评】本题考查了双曲线的方程和渐近线方程以及点到直线的距离,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆中心在坐标原点,焦点在轴上,离心率,若椭圆与直线交于两点,且(为坐标原点),求椭圆的方程.参考答案:由
设椭圆方程为
2分由已知(△)
4分由
8分代入(△)式解得
10分19.已知二项式,(n∈N)的展开式中第5项的系数与第3项的系数的比是10:1,(1)求展开式中各项的系数和(2)求展开式中系数最大的项以及二项式系数最大的项参考答案:解:(1)∵第5项的系数与第3项的系数的比是10:1,∴,解得n=8令x=1得到展开式中各项的系数和为(1-2)=1(2)展开式中第r项,第r+1项,第r+2项的系数绝对值分别为,,,若第r+1项的系数绝对值最大,则必须满足:≤并且≤,解得5≤r≤6;所以系数最大的项为T=1792;二项式系数最大的项为T=112020.如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.(1)求出y关于x的函数解析式及x的取值范围;(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.参考答案:考点:基本不等式在最值问题中的应用;函数模型的选择与应用;不等式的实际应用.专题:应用题;不等式的解法及应用.分析:(1)根据面积确定AD的长,利用围墙(包括EF)的修建费用均为500元每平方米,即可求得函数的解析式;(2)根据函数的特点,满足一正二定的条件,利用基本不等式,即可确定函数的最值.解答:解:(1)设AD=t米,则由题意得xt=2400,且t>x,故t=>x,可得0,…(4分)则y=500(3x+2t)=500(3x+2×),所以y关于x的函数解析式为y=1500(x+)(0).(2)y=1500(x+)≥1500×2=120000,当且仅当x=,即x=40时等号成立.故当x为40米时,y最小.y的最小值为120000元.点评:本题考查函数模型的构建,考查基本不等式的运用,确定函数模型是关键.21.(本题满分12分)在海岸A处,发现北偏东450方向,距离A为nmile的B处有一艘走私船,在A处北偏西750方向,距离A为2nmile的C处有一艘缉私艇奉命以nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东300方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.参考答案:设缉私艇追上走私船需t小时,则BD=10tnmile,CD=tnmile
=
..............................4分即
BC=,
由正弦定理得
......................6分
..........................7分所以BC为东西走向
...............................8分在
........................9分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026湖北事业单位联考仙桃市招聘216人备考题库带答案详解(培优b卷)
- 2026江西南昌青山湖区南师附小高新幼儿园招聘教师备考题库含答案详解(b卷)
- 2025年山东钢都置业有限公司招聘笔试参考题库附带答案详解
- 环保包装材料研发中心2025年建设投资与经济效益可行性分析
- 2026江苏南京大学数据管理创新研究中心准聘长聘岗位(事业编制)招聘备考题库带答案详解(研优卷)
- 2025年山东省环保发展集团有限公司校园招聘(144人左右)笔试参考题库附带答案详解
- 节后吊装作业安全要点培训
- 2026湖北襄阳市东风井关农业机械有限公司招聘6人备考题库含答案详解(预热题)
- 2025年中国铁路太原局集团有限公司招247人笔试参考题库附带答案详解
- 2025山东青岛市平度市人民检察院招聘劳务派遣制书记员11人笔试历年难易错考点试卷带答案解析
- 谷雨生物2024环境、社会及管治(ESG)报告
- 2025金风变流器2.0MW故障代码手册V4
- 房地产估价试题及答案
- 龙湖物业培训课件
- 反诈知识竞赛题库附答案(150 题)
- 2025年注册可靠性工程师资格认证考试题库500题(含真题、重点题)
- 个人购房合同样本大全
- T-CBMF 91-2020 T-CCPA 17-2020 城市综合管廊结构混凝土应用技术规程
- 电力配网工程各种材料重量表总
- 抗菌药物临床应用指导原则
- 一点一策模板课件
评论
0/150
提交评论