广西壮族自治区柳州市三防中学高二数学文联考试题含解析_第1页
广西壮族自治区柳州市三防中学高二数学文联考试题含解析_第2页
广西壮族自治区柳州市三防中学高二数学文联考试题含解析_第3页
广西壮族自治区柳州市三防中学高二数学文联考试题含解析_第4页
广西壮族自治区柳州市三防中学高二数学文联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区柳州市三防中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案种数为()A.150 B.240 C.60 D.120参考答案:A试题分析:分两种情况:一是按照2,2,1分配,有种结果;二是按照3,1,1分配,有种结果,根据分类加法得到共种结果,故选A.考点:计数原理.2.下列推理合理的是A.是增函数,则B.因为、),则(是虚数单位)C.、是锐角的两个内角,则D.直线,则(、分别为直线、的斜率)参考答案:C3.如图21-7所示程序框图,若输出的结果y的值为1,则输入的x的值的集合为()图21-7A.{3}

B.{2,3}C.

D.参考答案:4.已知命题:实数满足,命题:函数是增函数。若为真命题,为假命题,则实数的取值范围为

)A.

B.

C.

D.参考答案:A5.定义函数,给出下列四个命题:(1)该函数的值域为;(2)当且仅当时,该函数取得最大值;(3)该函数是以为最小正周期的周期函数;(4)当且仅当时,.上述命题中正确的个数是(

)(A)1个

(B)2个

(C)2个

(D)2个

参考答案:B略6.用数学归纳法证明等式:1+2+3+…+2n=n(2n+1)时,由n=k到n=k+1时,等式左边应添加的项是()A.2k+1 B.2k+2 C.(2k+1)+(2k+2) D.(k+1)+(k+2)+…+2k参考答案:C【考点】RG:数学归纳法.【分析】由数学归纳法可知n=k时,左端为1+2+3+…+2k,到n=k+1时,左端左端为1+2+3+…+2k+(2k+1)+(2k+2),从而可得答案.【解答】解:∵用数学归纳法证明等式1+2+3+…+2n=n(2n+1)时,当n=1左边所得的项是1+2;假设n=k时,命题成立,左端为1+2+3+…+2k);则当n=k+1时,左端为1+2+3+…+2k+(2k+1)+(2k+2),∴由n=k到n=k+1时需增添的项是(2k+1)+(2k+2).故选:C.7.函数y=4x-x3的单调递增区是(

)A.(-∞,-2)

B.(2,+∞)

C.(-∞,-2)和(2,+∞)

D.(-2,2)参考答案:D略8.已知等比数列{an}满足an>0,n=1,2,…,且a5?a2n﹣5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n﹣1=()A.n(2n﹣1) B.(n+1)2 C.n2 D.(n﹣1)2参考答案:C【考点】等比数列的性质.【分析】先根据a5?a2n﹣5=22n,求得数列{an}的通项公式,再利用对数的性质求得答案.【解答】解:∵a5?a2n﹣5=22n=an2,an>0,∴an=2n,∴log2a1+log2a3+…+log2a2n﹣1=log2(a1a3…a2n﹣1)=log221+3+…+(2n﹣1)=log2=n2.故选:C.9.若命题“?x∈R,ax2﹣ax﹣2≤0”是真命题,则实数a的取值范围是()A.[﹣8,0] B.(﹣8,0] C.[﹣8,0) D.(﹣8,0)参考答案:A【考点】2H:全称命题.【分析】对a分类讨论,利用二次函数的单调性即可得出.【解答】解:命题“?x∈R,ax2﹣ax﹣2≤0”是真命题,令f(x)=ax2﹣ax﹣2,a=0时,f(x)=﹣2<0成立.a≠0时,?x∈R,f(x)=ax2﹣ax﹣2≤0恒成立,则,解得﹣8≤a<0.综上可得:﹣8≤a≤0.故选:A.10.独立性检验中,假设:变量X与变量Y没有关系.则在成立的情况下,估算概率表示的意义是(

A.变量X与变量Y有关系的概率为

B.变量X与变量Y没有关系的概率为

C.变量X与变量Y没有关系的概率为

D.变量X与变量Y有关系的概率为

参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.直线y=x+3与曲线﹣=1交点的个数为.参考答案:3【考点】直线与圆锥曲线的关系.【专题】数形结合.【分析】先对x进行分类讨论:≥0时,曲线方程为﹣=1,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为,图形为椭圆在y轴的左半部分;如图所示,再结合图形即可得出直线y=x+3与曲线﹣=1交点的个数.【解答】解:当x≥0时,曲线方程为﹣=1,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为,图形为椭圆在y轴的左半部分;如图所示,由图可知,直线y=x+3与曲线﹣=1交点的个数为3.故答案为3.【点评】本题考查直线与圆锥曲线的关系,题目中所给的曲线是部分双曲线的椭圆组成的图形,只要注意分类讨论就可以得出结论,本题是一个基础题.12.已知正方体中,是的中点,则异面直线和所成角的余弦值为

参考答案:;13.在(1+x)n(n∈N*)的二项展开式中,若只有x5系数最大,则n=

.参考答案:10考点:二项式定理.专题:计算题.分析:求出x5的系数,据展开式中中间项的二项式系数最大,求出n的值解答: 解:∵(1+x)n(n∈N*)的展开式通项为Tr+1=Cnrxr当r=5时,Cn5值最大所以Cn5是展开式中最大的二项式系数所以n=10故答案为10点评:解决二项式系数的最值问题常利用结论:二项展开式中中间项的二项式系数最大.14.若椭圆的一条弦被点平分,则此弦所在直线的斜率是________。参考答案:15.

已知等差数列{an}的公差d不为0,等比数列{bn}的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于_____________.参考答案:解析:因为,故由已知条件知道:1+q+q2为,其中m为正整数。令,则。由于q是小于1的正有理数,所以,即5≤m≤13且是某个有理数的平方,由此可知。

16.设等比数列{an}的前n项和为Sn,若27a3﹣a6=0,则=.参考答案:28【考点】等比数列的通项公式.【分析】设出等比数列的首项和公比,由已知求出公比,代入等比数列的前n项和得答案.【解答】解:设等比数列{an}的首项为a1,公比为q,由27a3﹣a6=0,得27a3﹣a3q3=0,即q=3,∴=.故答案为:28.17.已知幂函数的图象过点(2,16)和(,m),则m=.参考答案:【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题;对应思想;待定系数法;函数的性质及应用.【分析】设出幂函数的解析式,用待定系数法求出解析式,再计算m的值.【解答】解:设幂函数的解析式为y=xa,其图象过点(2,16),则2a=16,解得a=4,即y=x4;又图象过点(,m),则m==.故答案为:.【点评】本题考查了用待定系数法求幂函数解析式的应用问题,是基础题目.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.椭圆C:+=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=,|PF2|=.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l过点M(﹣2,1),交椭圆C于A,B两点,且M恰是A,B中点,求直线l的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)根据椭圆的定义,可得a的值,在Rt△PF1F2中,|F1F2|=,可得椭圆的半焦距c=,从而可求椭圆C的方程为=1;(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2),设过点(﹣2,1)的直线l的方程为y=k(x+2)+1,代入椭圆C的方程,利用A,B关于点M对称,结合韦达定理,即可求得结论.【解答】解:(Ⅰ)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.在Rt△PF1F2中,|F1F2|=,故椭圆的半焦距c=,从而b2=a2﹣c2=4,所以椭圆C的方程为=1.(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2).若直线l斜率不存在,显然不合题意.从而可设过点(﹣2,1)的直线l的方程为y=k(x+2)+1,代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k﹣27=0.因为A,B关于点M对称,所以,解得k=,所以直线l的方程为,即8x﹣9y+25=0.经检验,△>0,所以所求直线方程符合题意.

19.(本小题满分10分)

已知函数,。

(Ⅰ)求函数的单调递增区间;

(Ⅱ)求函数在区间上的最小值;

(Ⅲ)试判断方程(其中)是否有实数解?并说明理由。参考答案:解:(Ⅰ)因为

1分则有

2分当,或时,,此时单调递增所以,函数的单调递增区间是和

3分(Ⅱ)因为,所以当,即时,函数单调递增;当,即时,函数单调递减

4分于是,当时,,函数在区间上单调递增此时,

5分当时,函数在上单调递减,在上单调递增此时,。综上所述,

6分(Ⅲ)方程没有实数解由,得:

7分设则当时,;当时,故函数在上单调递增,在上单调递减

8分所以,函数在上的最大值为由(Ⅱ)可知,在上的最小值为

9分而,所以方程没有实数解

10分20.高三学生小罗利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):消费金额(0,200)[200,400)[400,600)[600,800)[800,1000)人数5101547x女性消费情况:男性消费情况:消费金额(0,200)[200,400)[400,600)[600,800)[800,1000)人数2310y2(Ⅰ)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”

女性男性总计网购达人

非网购达人

总计

P(k2≥k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879附:(,其中n=a+b+c+d)参考答案:【考点】独立性检验的应用.【分析】(Ⅰ)根据分层抽样方法求出x、y的值,利用列举法计算基本事件数,求出对应的概率;(Ⅱ)列出2×2列联表,计算观测值K2,对照表中数据,判断结论是否成立即可.【解答】解:(Ⅰ)按分层抽样女性应抽取80名,男性应抽取20名.∴x=80﹣(5+10+15+47)=3…y=20﹣(2+3+10+2)=3…抽出的100名且消费金额在[800,1000](单位:元)的网购者中有三位女性设为A,B,C;两位男性设为a,b,从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)共10件…设“选出的两名网购者恰好是一男一女”为事件A事件A包含的基本事件有:(A,a),(A,b),(B,a),(B,b),(C,a),(C,b)共6件…∴P(A)==.…(Ⅱ)2×2列联表如下表所示

女性男性总计网购达人50555非网购达人301545总计8020100…则k2=…≈9.091…∵9.091>6.635且P(k2≥6.635)=0.010…答:在犯错误的概率不超过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论