版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省威海市环翠区2024届八年级下册数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列三个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③2.如图,在梯形ABCD中,AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于()cmA.10 B.13 C.20 D.263.用一些相同的正方形,摆成如下的一些大正方形,如图第(1)个图中小正方形只有一个,且阴影面积为1,第(2)个图中阴影小正方形面积和3;第(3)个图中阴影小正方形面积和为5,第(9)个图中阴影小正方形面积和为()A.11 B.13 C.15 D.174.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是(
)A.y=3(x-2)2+1
B.y=3(x+2)2-1
C.y=3(x-2)2-1
D.y=3(x+2)2+15.如图,将个全等的阴影小正方形摆放得到边长为的正方形,中间小正方形的各边的中点恰好为另外个小正方形的一个顶点,小正方形的边长为(、为正整数),则的值为()A. B. C. D.6.如图,在矩形ABCD中,AB=2,∠AOD=120°,则对角线AC等于()A.3 B.4 C.5 D.67.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为()A.3 B.4 C.5 D.68.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD9.正比例函数的图象向上平移1个单位后得到的函数解析式为()A. B. C. D.10.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120° B.130° C.140° D.150°二、填空题(每小题3分,共24分)11.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为______.12.如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.13.若是的小数部分,则的值是__________.14.函数的自变量的取值范围是______.15.如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.16.如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.17.当二次根式的值最小时,x=______.18.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.三、解答题(共66分)19.(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?20.(6分)先化简,再求值:,其中a=321.(6分)A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:(1)表示乙离开A地的距离与时间关系的图像是________(填);甲的速度是__________km/h;乙的速度是________km/h.(2)甲出发后多少时间两人恰好相距5km?22.(8分)如图为一个巨型广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求广告牌支架的示意图ΔABC的周长.23.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?24.(8分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.25.(10分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:数据收集109.59.510899.5971045.5107.99.510数据分析9.598.58.5109.510869.5109.598.59.56整理,描述数据:按如下分数段整理,描述这两组样本数据:10数据收集11365数据分析(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据:两组样本数据的平均数,中位数,众数如下表所示:项目平均数中位数众数数据收集8.759.510数据分析8.819.259.5得出结论:(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)26.(10分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,于是得到结论.【详解】解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,又∵PE⊥BC,PF⊥CD,∴四边形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①③正确;只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;故选:B.【点睛】本题主要考查了正方形的性质,正确证明△ABP≌△CBP,以及理解P的任意性是解决本题的关键.2、D【解析】分析:首先根据梯形中位线的性质得出AB+CD=36cm,根据MN的长度以及三角形中位线的性质得出EM=FN=5cm,从而得出CD=10cm,然后得出答案.详解:∵EF=,∴AB+CD=36cm,∵MN=8cm,EF=18cm,∴EM+FN=10cm,∴EM=FN=5cm,根据三角形中位线的性质可得:CD=2EM=10cm,∴AB=36-10=26cm,故选D.点睛:本题主要考查的是梯形中位线以及三角形中位线的性质,属于基础题型.明确中位线的性质是解决这个问题的关键.3、D【解析】
根据前4个图中阴影小正方形的面积和找到规律,然后利用规律即可解题.【详解】第(1)个面积为12﹣02=1;第(2)个面积为22﹣12=3;第(3)个面积为32﹣22=5;…第(9)个面积为92﹣82=17;故选:D.【点睛】本题为图形规律类试题,找到规律是解题的关键.4、D【解析】
试题分析:二次函数的平移规律:上加下减,左加右减.把二次函数的图象向左平移2个单位,得到再向上平移1个单位,得到故选D.考点:二次函数的性质点评:本题属于基础应用题,只需学生熟练掌握二次函数的平移规律,即可完成.5、B【解析】
通过小正方形的边长表示出大正方形的边长,再利用a、b为正整数的条件分析求解.【详解】解:由题意可知,∴∵a、b都是正整数∴=0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a、b是关键.6、B【解析】
已知矩形ABCD,,所以在直角三角形ABD中,,则得,根据矩形的性质,.【详解】已知矩形ABCD,
,
,
在直角三角形ABD中,
(直角三角形中角所对的直角边等于斜边的一半),
矩形的对角线相等,
.
所以D选项是正确的.【点睛】此题考查的知识点是矩形的性质和角的直角三角形问题,解题的关键是由已知得角的直角三角形及矩形性质求出AC.7、B【解析】
首先根据反比例函数中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD-S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.【详解】解:∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,
∴S矩形ACOD=S矩形BEOF=3,
又∵S阴影=1,
∴S1=S2=3-1=2,
∴S1+S2=1.
故选:B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.8、B【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【详解】四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.
故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.9、A【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【详解】根据“上加下减”的原理可得:函数y=−2x的图象向上平移1个单位后得出的图象的函数解析式为y=−2x+1.故选A【点睛】此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质10、C【解析】
由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.二、填空题(每小题3分,共24分)11、x<【解析】
根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,同理得到y2=k2x+b2,然后求出不等式的解集即可.【详解】依题意得:直线l1:y1=k1x+b1经过点(0,1),(1,-1),则.解得.故直线l1:y1=x+1.同理,直线l2:y2=x-1.由k1x+b1>k2x+b2得到:x+1>x-1.解得x<.故答案是:x<.【点睛】此题主要考查了一次函数与一元一次不等式,一次函数图象与几何变换,根据题意求出直线解析式是解题的关键所在.12、1.【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.【详解】解:由折叠可得,EF=AE,BF=AB.∵△FDE的周长为8,△FCB的周长为22,∴DF+AD=8,FC+CB+AB=22,∴平行四边形ABCD的周长=8+22=30,∴AB+BC=BF+BC=15,又∵△FCB的周长=FC+CB+BF=22,∴CF=22-15=1,故答案为:1.【点睛】本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.13、1【解析】
先估计的近似值,再求得m,代入计算即可.【详解】∵是的小数部分∴m=-1把m代入得故答案为1.【点睛】此题主要考查了代数式,熟练掌握无理数是解题的关键.14、x>【解析】
根据分式、二次根式有意义的条件,确定x的范围即可.【详解】依题意有2x-3>2,解得x>.故该函数的自变量的取值范围是x>.故答案为:x>.【点睛】本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15、或1【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=1,BC=12,∴AC==13,∵将ΔABE沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,,由勾股定理得:,解得:;②当点B′落在AD边上时,如图2所示,此时ABEB′为正方形,∴BE=AB=1,综上所述,BE的长为或1,故答案为:或1.【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.16、1:1【解析】
如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.【详解】解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.∵DE=AE,DF=FC,∴EF∥AC,EF:AC=1:2,∴S△DEF=S△DAC=×1S=S,同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,∴四边形EFQP是平行四边形,∴S平行四边形EFQP=1S,∴S△TPQ=S平行四边形EFQP=2S,∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,故答案为1:1.【点睛】本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.17、1.【解析】
直接利用二次根式的定义分析得出答案.【详解】∵二次根式的值最小,∴2x﹣6=0,解得:x=1,故答案为1.【点睛】本题主要考查了二次根式的定义,正确把握定义是解题关键.18、1.【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=1,CE=BC−BE=6−2=1,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=1,故答案为1.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题(共66分)19、(1)乙平均数为8,方差为0.8;(2)乙.【解析】
(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.20、【解析】
根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.【详解】原式=当时,原式=【点睛】本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.21、(1);30;20;(2)甲出发后1.3h或者1.5h时,甲乙相距5km.【解析】
解:(1)乙离开A地的距离越来越远,图像是;甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;(2)由图可求出,由得;由得答:甲出发后1.3h或者1.5h时,甲乙相距5km.考点:一次函数的应用22、ΔABC的周长为42m.【解析】
直接利用勾股定理逆定理得出AD⊥BC,再利用勾股定理得出DC的长,进而得出答案.【详解】解:在ΔABD中,∵AB=13m ∴A∴∠ADB=∠ADC=90°∴AD⊥BC在RtΔADC中,∵AD=12m ∴DC=A∴BC=BD+DC=5+9=14m∴BC+AB+AC=14+13+15=42m∴ΔABC的周长为42m.【点睛】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.23、(1);(2)20分钟.【解析】
(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.24、(1);(2)【解析】
(1)设直线AB解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出直线AB所对应的函数解析式;(2)把点P(a,-2)代入吧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏淮安市洪泽区中医院招聘合同制专业技术人员2人(第二批)备考核心试题附答案解析
- 2025中国石化河北石家庄石油分公司社会招聘1人考试核心试题及答案解析
- 临床试验肿瘤评估
- 2026福建三明市泰宁县紧缺急需专业教师招聘20人笔试重点试题及答案解析
- 2026福建三明市建宁县公开招聘紧缺急需专业教师19人考试核心试题及答案解析
- 2026年云南省玉溪市江川区卫生健康系统公开招聘毕业生(29人)备考笔试试题及答案解析
- 2025青海海北州第二人民医院面向社会招聘不占编制事业单位工作人员5人考试重点题库及答案解析
- 2025湖南郴州市第三人民医院员工招聘1人考试核心试题及答案解析
- 2025年齐齐哈尔市泰来县公益岗保洁人员招聘2人考试核心试题及答案解析
- 2025河北秦皇岛市社会保险事业服务中心选调工作人员6名考试重点试题及答案解析
- 北京市东城区2024-2025学年五年级上册期末测试数学试卷(含答案)
- 眼科手术患者的心理护理与情绪管理
- 项目分包制合同范本
- 2025天津大学管理岗位集中招聘15人考试笔试备考题库及答案解析
- 企业数据安全管理制度
- 2025年公务员多省联考《申论》题(陕西A卷)及参考答案
- 摘菜劳动课件
- 2025义齿行业市场分析报告
- DB34∕T 4796-2024 药品临床综合评价质量控制规范
- 2025年公共管理与公共政策专业考试试卷及答案
- 学堂在线 雨课堂 学堂云 批判性思维-方法和实践 章节测试答案
评论
0/150
提交评论