上海市延安实验2024年数学八年级下册期末监测模拟试题含解析_第1页
上海市延安实验2024年数学八年级下册期末监测模拟试题含解析_第2页
上海市延安实验2024年数学八年级下册期末监测模拟试题含解析_第3页
上海市延安实验2024年数学八年级下册期末监测模拟试题含解析_第4页
上海市延安实验2024年数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市延安实验2024年数学八年级下册期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若,是函数图象上的两点,当时,下列结论正确的是A. B. C. D.2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.3.下列从左边到右边的变形,是因式分解的是A. B.C. D.4.如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是()平方厘米.()A.18 B.7.74 C.9 D.28.265.如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为()A.8 B.9 C.10 D.26.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个7.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.68.若式子在实数范围内有意义,则x的取值范围是()A.x> B.x> C.x≥ D.x≥9.8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是()A. B. C. D.10.如图,在矩形ABCD中,AB=5cm,BC=4cm动点P从B点出发,沿B-C-D-A方向运动至A处停止.设点P运动的路程为x,△ABP的面积为y,x,y关系(),A. B. C. D.二、填空题(每小题3分,共24分)11.实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在七年级设立六个课外学习小组,下面是七年级学生参加六个学习小组的统计表和扇形统计图,请你根据图表中提供的信息回答下列问题.学习小组

体育

美术

科技

音乐

写作

奥数

人数

72

36

54

18

(1)七年级共有学生人;(2)在表格中的空格处填上相应的数字;(3)表格中所提供的六个数据的中位数是;(4)众数是.12.等边三角形中,两条中线所夹的锐角的度数为_____.13.已知反比例函数y=(k≠0)的图象在第二、四象限,则k的值可以是:____(写出一个满足条件的k的值).14.四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.15.平行四边形ABCD中,∠A=80°,则∠C=°.16.已知b是a,c的比例中项,若a=4,c=16,则b=________.17.将2019个边长都为的正方形按如图所示的方法摆放,点,,分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为__.18.顺次连结任意四边形各边中点所得到的四边形一定是.三、解答题(共66分)19.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.20.(6分)如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.(1)求证:△ABG≌△CDE;(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.21.(6分)分解因式:22.(8分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.23.(8分)如图,在中,,,,.求的周长;判断是否是直角三角形,并说明理由.24.(8分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组成员意外的发现图①中(三角板一边与CC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;(2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.(3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.25.(10分)如图,在梯形,,过点,垂足为,并延长,使,联结.(1)求证:四边形是平行四边形。(2)联结,如果26.(10分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。

参考答案一、选择题(每小题3分,共30分)1、A【解析】把点P1(x1,y1),P1(x1,y1)代入得,,则.∵x1>x1>0,∴,,,即0<y1<y1.故选A.2、B【解析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.3、B【解析】

根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法;因式分解的要求:分解要彻底,小括号外不能含整式加减形式.【详解】A选项,利用提公因式法可得:,因此A选项错误,B选项,根据立方差公式进行因式分解可得:,因此B选项正确,C选项,不属于因式分解,D选项,利用提公因式法可得:,因此D选项错误,故选B.【点睛】本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.4、B【解析】【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.【详解】因为6×6=36,所以正方形的边长是6厘米36-3.14×(6÷2)2=36-28.26=7.74(平方厘米)故选:B【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.5、B【解析】

取BC中点O,连接OE,OF,根据矩形的性质可求OC,CF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF.【详解】解:如图,取BC中点O,连接OE,OF,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=8,∠C=10°,∵点F是CD中点,点O是BC的中点,∴CF=3,CO=4,∴OF==5,∵点O是Rt△BCE的斜边BC的中点,∴OE=OC=4,∵根据三角形三边关系可得:OE+OF≥EF,∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=1.故选:B.【点睛】本题考查了矩形的性质,三角形三边关系,勾股定理,直角三角形的性质,找到当点O,点E,点F共线时,EF有最大值是本题的关键.6、C【解析】

试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质7、C【解析】

先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.8、D【解析】分析:根据二次根式有意义的条件:被开方数是非负数作答.详解:根据二次根式的意义,被开方数2x-3≥0,解得x≥.故选D.点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式的被开方数是非负数.9、D【解析】先求这10个人的总成绩8x+2×84=8x+168,再除以10可求得平均值为:.故选D.10、B【解析】

易得当点P在BC上由B到C运动时△ABP的面积逐渐增大,由C到D运动5cm,△ABP的面积不变,由D到A运动4cm,△ABP的面积逐渐减小直至为0,由此可以作出判断.【详解】函数图象分三段:①当点P在BC上由B到C运动4cm,△ABP的面积逐渐增大;②当点P在CD上由C到D运动5cm,△ABP的面积不变;③当点P在DA上由D到A运动4cm,△ABP的面积逐渐减小,直至为0.由此可知,选项B正确.故选B.【点睛】本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.二、填空题(每小题3分,共24分)11、(1)360;(2)1,108,20%;(3)63;(4)1.【解析】解:(1)读图可知:有10%的学生即36人参加科技学习小组,故七年级共有学生:36÷10%=360(人).故答案为360;(2)统计图中美术占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,参加美术学习小组的有:360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=1(人),奥数小组的有360×30%=108(人);学习小组

体育

美术

科技

音乐

写作

奥数

人数

1

1

36

54

18

108

故答案为1,108,20%;(3)(4)从小到大排列:18,36,54,1,1,108故众数是1,中位数=(54+1)÷2=63;故答案为63,1.12、60°【解析】

如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=∠ABC=30°,再根据三角形外角的性质即可得出结论.【详解】如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=∠ABC=30°,∴∠3=∠1+∠2=60°.【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.13、-1(答案不唯一)【解析】

由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-1.故答案为-1(答案不唯一).【点睛】本题考查了反比例函数图象的性质(1)反比例函数y=(k≠0)的图象是双曲线;(1)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.14、30或150【解析】如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,∴∠ABC=60°,当∠A为锐角时,如图2,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为30或150.15、1【解析】试题分析:利用平行四边形的对角相等,进而求出即可.解:∵四边形ABCD是平行四边形,∴∠A=∠C=1°.故答案为:1.16、±8【解析】

根据比例中项的定义即可求解.【详解】∵b是a,c的比例中项,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案为±8【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.17、【解析】

过正方形ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,根据已知可求得一个阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和,即可得出结果.【详解】解:如图,过正方形的中心作于,作于,则,,且,,则四边形的面积就等于正方形的面积,则的面积是,得阴影部分面积等于正方形面积的,即是,则2019个正方形重叠形成的重叠部分的面积和故答案为:【点睛】本题考查了正方形的性质、全等三角形的判定与性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.18、平行四边形【解析】试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.考点:平行四边形的判定三、解答题(共66分)19、(1)84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.【解析】

(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,故笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号【点睛】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.20、(1)证明见解析;(2)矩形;(3).【解析】试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;(2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;(3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);(2)四边形EFGH是矩形.证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.21、.【解析】

先提公因式2,再用完全平方公式进行分解即可。【详解】解:.【点睛】本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。22、(1)y1=|x|,图象见解析;(2)①±4;②答案见解析.【解析】

(1)写出函数解析式,画出图象即可;(2)①分两种情形考虑,求出点A坐标,利用待定系数法即可解决问题;②利用图象法分两种情形即可解决问题.【详解】(1)由题意y1=|x|,函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2,∴k=4,同法当点A在第二象限时,k=﹣4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.【点睛】本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.23、(1)54;(2)不是直角三角形,理由见解析.【解析】

(1)在和中,利用勾股定理分别求得AB与AC的长即可;(2)利用勾股定理的逆定理进行判断即可.【详解】解:,.在和中,根据勾股定理得,,又,,,,;不是直角三角形.理由:,,不是直角三角形.【点睛】本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点.24、(1)见解析;(1)BN1=NC1+CD1;(3)CM1+CN1=DM1+BN1,理由见解析.【解析】

(1)连结AN,由矩形知AO=CO,∠ABN=90°,AB=CD,结合ON⊥AC得NA=NC,由∠ABN=90°知NA1=BN1+AB1,从而得证;(1)连接DN,在Rt△CDN中,根据勾股定理可得:ND1=NC1+CD1,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN1=NC1+CD1;(3)延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN1+CM1=DM1+BN1.【详解】(1)证明:连结AN,∵矩形ABCD∴AO=CO,∠ABN=90°,AB=CD,∵ON⊥AC,∴NA=NC,∵∠ABN=90°,∴NA1=BN1+AB1,∴NC1=BN1+CD1.(1)如图1,连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND1=NC1+CD1,∴BN1=NC1+CD1.(3)CM1+CN1=DM1+BN1理由如下:延长MO交AB于E,∵矩形ABCD,∴BO=DO,∠ABC=∠DCB=90°,AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO(ASA),∴OE=OM,BE=DM,∵MO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE1=BE1+BN1,NM1=CN1+CM1,∴CN1+CM1=BE1+BN1

,即CN1+CM1=DM1+B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论