甘肃省武威五中学2024届八年级数学第二学期期末达标检测模拟试题含解析_第1页
甘肃省武威五中学2024届八年级数学第二学期期末达标检测模拟试题含解析_第2页
甘肃省武威五中学2024届八年级数学第二学期期末达标检测模拟试题含解析_第3页
甘肃省武威五中学2024届八年级数学第二学期期末达标检测模拟试题含解析_第4页
甘肃省武威五中学2024届八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威五中学2024届八年级数学第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若关于x的方程有两个相等的实数根,则常数c的值是A.6 B.9 C.24 D.362.下列各组数中,不能构成直角三角形的是()A. B. C. D.3.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前跑过的路程大于小林前跑过的路程D.小林在跑最后的过程中,与小苏相遇2次4.若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.235.在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为()A.6 B.9 C.12 D.156.若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60 B.30 C.20 D.327.正方形具有而菱形不一定具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角8.二次根式在实数范围内有意义,则x应满足的条件是(

)A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣19.在矩形中,,,点是上一点,翻折,得,点落在上,则的值是()A.1 B.C. D.10.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃11.下列图形中,中心对称图形有A. B. C. D.12.若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k<3 B.k<0 C.k>3 D.0<k<3二、填空题(每题4分,共24分)13.化简的结果为_____.14.若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆,且AB大于AD.设AD为xm,依题意可列方程为______.15.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.若∠MBD=40°,则∠NCD的度数为_____.16.甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.17.已知一组数据11、17、11、17、11、24共六个数,那么数11在这组数据中的频率是______.18.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_______.三、解答题(共78分)19.(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?20.(8分)为传承中华优秀传统文化,某校团委组织了一次全校名学生参加的“汉字书写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:(1)_____,______;(2)补全频数直方图;(3)这名学生成绩的中位数会落在______分数段;(4)若成绩在分以上(包括分)为“优”等,请你估计该校参加本次比赛的名学生中成绩为“优”等的有多少人。21.(8分)某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下:七年级8579898389986889795999878589978689908977八年级7194879255949878869462999451889794988591分组整理,描述数据(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;得出结论,说明理由.(3)整体成绩较好的年级为___,理由为___(至少从两个不同的角度说明合理性).22.(10分)如图,△ABC三个顶点的坐标分别是A1,1(1)请画出△ABC向左平移5个单位长度后得到的△A(2)请画出△ABC关于原点对称的△A(3)在x轴上求点P的坐标,使PA+PB的值最小.23.(10分)解方程(2x-1)2=3-6x.24.(10分)先化简:,再从中选取一个合适的代入求值.25.(12分)小王开车从甲地到乙地,去时走A线路,全程约100千米,返回时走B路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.26.已知一次函数与正比例函数都经过点,的图像与轴交于点,且.(1)求与的解析式;(2)求⊿的面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.【详解】∵方程x2+6x+c=0有两个相等的实数根,∴△=62-4×1×c=0,解得:c=9,故选B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2、C【解析】

根据勾股定理的逆定理逐项计算即可.【详解】A.∵32+42=52,∴能构成直角三角形;B.∵12+22=,∴能构成直角三角形;C.∵,∴不能构成直角三角形;D.∵12+=22,∴能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.3、D【解析】

A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.4、B【解析】

直接利用8<<9,进而得出a,b的值即可得出答案.【详解】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=1.故选:B.【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.5、C【解析】

首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【详解】解:如图:∵AC平分∠DAB,∴∠DAC=∠BAC.∵四边形ABCD为平行四边形,∴∠B=∠D.在△ADC和△ABC中,∠B=∠D∠BAC=∠DAC∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=3,∴▱ABCD的周长为:3×4=1.故选:C【点睛】本题主要考查了全等三角形的判定及菱形的判定及性质,找出判定菱形的条件是解答此题的关键.6、B【解析】

解:根据直角三角形的勾股定理可得:另一条直角边=,则S=12×5÷2=30故选:B.7、A【解析】试题分析:根据正方形、菱形的性质依次分析各选项即可判断.正方形具有而菱形不一定具有的性质是对角线相等故选A.考点:正方形、菱形的性质点评:本题属于基础应用题,只需学生熟练掌握正方形、菱形的性质,即可完成.8、A【解析】

二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【详解】由题意得:x-1≥0,则x≥1

,故答案为:A.【点睛】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.9、D【解析】

设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.【详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,∴BC`=BC=5,EC`=CE=x,DE=CD−CE=3−x.在Rt△ABC`中,由勾股定理得:AC`=5−3=16,∴AC`=4,DC`=5−4=1.在Rt△DEC`中,由勾股定理得:EC`=DE+DC`,即x=(3−x)+1,解得:x=.故选D【点睛】此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算10、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.11、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、D【解析】

由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴k-3<解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.二、填空题(每题4分,共24分)13、x【解析】

先把两分数化为同分母的分数,再把分母不变,分子相加减即可.【详解】,故答案为x.14、(无需写成一般式)【解析】

根据AD=xm,就可以得出AB=38-x,由矩形的面积公式结合矩形是“优美矩形”就可以得出关于x的方程.【详解】∵AD=xm,且AB大于AD,∴AB=38-x,∵矩形ABCD是“优美矩形”,∴整理得:.故答案为:.【点睛】考查了根据实际问题列一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.15、40°【解析】

先根据作法证明△ABD≌△ACD,由全等三角形的性质可得∠BAD=∠CAD,∠BDA=∠CDA,然后根据三角形外角的性质可证∠NCD=∠MBD=40°.【详解】在△ABD和△ACD中,∵AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD,∴∠BAD=∠CAD,∠BDA=∠CDA.∵∠MBD=∠BAD+∠BDA,∠NCD=∠CAD+∠CDA,∴∠NCD=∠MBD=40°.故答案为:40°.【点睛】本题考查了尺规作图,全等三角形的判定与性质,三角形外角的性质,熟练掌握三角形全等的判定与性质是解答本题的关键.16、甲【解析】

根据根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。17、0.1【解析】

根据公式:频率=即可求解.【详解】解:11的频数是3,则频率是:=0.1.故答案是:0.1.【点睛】本题考查了频率公式:频率=,理解公式是关键.18、【解析】

先证明,再利用全等角之间关系得出,再由H为BF的中点,又为直角三角形,得出,为直角三角形再利用勾股定理得出BF即可求解.【详解】,.∴∠BEA=∠AFD,又∵∠AFD+∠EAG=90°,∴∠BEA+∠EAG=90°,∴∠BGF=90°.H为BF的中点,又为直角三角形,.∵DF=2,∴CF=5-2=3.∵为直角三角形.∴BF===.【点睛】本题主要考查全等三角形判定与性质,勾股定理,直角三角形斜边中线等于斜边一半知识点,熟悉掌握是关键.三、解答题(共78分)19、(1)y甲=0.8x(x≥0),;(2)当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.【解析】

(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.【详解】(1)设y甲=kx,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y甲=0.8x(x≥0);当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000x=2000,解得k=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得:,解得:.所以;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.考点:一次函数的应用;分类讨论;方案型.20、(1)70,0.05;(2)见解析;(3)80≤x<90;(4)625人.【解析】

(1)根据第一组的频数是30,频率是0.15,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第一组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数2500乘以“优”等学生的所占的频率即可.【详解】(1)本次调查的总人数为30÷0.15=200,则a=200×0.35=70,b=10÷200=0.05,故答案为:70,0.05;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80⩽x<90,∴这200名学生成绩的中位数会落在80⩽x<90分数段,故答案为:80⩽x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:2500×0.25=625(人).【点睛】此题考查频数(率)分布表,频数(率)分布直方图,中位数,解题关键在于看懂图中数据21、(1)见解析;(2)91.5,94,55%;(3)八年级,八年级的中位数和优秀率都高于七年级.【解析】

(1)由收集的数据即可得;根据题意不全频数分布直方图即可;(2)根据众数和中位数和优秀率的定义求解可得;(3)八年级的中位数和优秀率都高于七年级即可的结论.【详解】(1)补全八年级20名学生安全教育频数分布直方图如图所示,(2)八年级20名学生安全教育考试成绩按从小到大的顺序排列为:5155627178858687889192949494949497989899∴中位数==91.5分;∵94分出现的次数最多,故众数为94分;优秀率为:×100%=55%,故答案为:91.5,94,55%;(3)整体成绩较好的年级为八年级,理由为八年级的中位数和优秀率都高于七年级。故答案为:八年级,八年级的中位数和优秀率都高于七年级.【点睛】此题考查条形统计图,中位数,众数,解题关键在于看懂图中数据.22、(1)见解析;(2)见解析;(3)P点坐标为:2,0.【解析】

(1)分别作出三顶点向左平移5个单位长度后得到的对应点,再顺次连接即可得;(2)分别作出三顶点关于原点O成中心对称的对应点,再顺次连接即可得;(3)作点A关于x轴的对称点A′,连接A′B,与x轴的交点即为所求.【详解】解:(1)如图所示:△A(2)如图所示:△A(3)如图所示:作点A关于x轴的对称点A′,连接A′B,此时PA+PB的值最小,P点坐标为:2,0.【点睛】本题考查了利用平移变换和旋转变换作图、轴对称-最短路线问题;熟练掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论