东莞市重点中学2024年八年级下册数学期末学业水平测试模拟试题含解析_第1页
东莞市重点中学2024年八年级下册数学期末学业水平测试模拟试题含解析_第2页
东莞市重点中学2024年八年级下册数学期末学业水平测试模拟试题含解析_第3页
东莞市重点中学2024年八年级下册数学期末学业水平测试模拟试题含解析_第4页
东莞市重点中学2024年八年级下册数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东莞市重点中学2024年八年级下册数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.函数y=5x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知一元二次方程,则它的一次项系数为()A. B. C. D.3.如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是()A.∠ABC=90° B.∠BCD=90° C.AB=CD D.AB∥CD4.如图,在中,对角线、相交于点,且,,则的度数为()A.35° B.40° C.45° D.55°5.下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差6.二次根式有意义的条件是()A.x>3 B.x>-3 C.x≥3 D.x≥-37.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30° B.35° C.40° D.45°8.如图,在平面直角坐标系中,点、的坐标分别是.,点在直线上,将沿射线方向平移后得到.若点的横坐标为,则点的坐标为()A. B. C. D.9.下列事件中,是必然事件的是()A.3天内下雨 B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同 D.a抛掷1个均匀的骰子,出现4点向上10.下列式子属于最简二次根式的是()A. B. C.(a>0) D.二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.12.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.13.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.14.如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.15.已知一次函数y=kx+b的图像如图所示,当x<2时,y的取值范围是________.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.17.定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.18.如图,在平面直角坐标系中,等边三角形ABC的顶点B,C的坐标分别为(1,0),(3,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.三、解答题(共66分)19.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.20.(6分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.21.(6分)某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水费(元)与用水量(吨)之间的函数关系.(1)当用水量超过10吨时,求关于的函数解析式(不必写自变量取值范围);(2)按上述分段收费标准小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?22.(8分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(3)问题解决:如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.23.(8分)先化简,再求值:(a+)÷,其中a=1.24.(8分)如图,平行四边形中,延长至使,连接交于点,点是线段的中点.(1)如图1,若,,求平行四边形的面积;(2)如图2,过点作交于点,于点,连接,若,求证:.25.(10分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.(1)让小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A,B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?26.(10分)判断代数式的值能否等于-1?并说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据一次函数图像与k,b的关系得出结论.【详解】解:因为解析式y=5x﹣3中,k=5>0,图象过一、三象限,b=﹣3<0,图象过一、三、四象限,故图象不经过第二象限,故选B.【点睛】考查了一次函数图像的性质,熟练掌握一次函数图像与k,b的关系是解决本题的关键,也可以列表格画出图像判断.2、D【解析】

根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,故选:D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).3、C【解析】

根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.【详解】A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;故选:C.【点睛】此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.4、A【解析】

由在中,对角线、相交于点,且可推出是矩形,可得∠DAB=90°进而可以计算的度数.【详解】解:在中∵∴AC=BD∵在中,AC=BD∴是矩形所以∠DAB=90°∵∴故选A【点睛】本题考查的是矩形的判定和性质.掌握是矩形的判定和性质是解题的关键.5、A【解析】

由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6、D【解析】

根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,有意义的条件是解得:故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.7、B【解析】

由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.【详解】解:由旋转可知,∠BAD=110°,AB=AD∴∠B=∠ADB,∠B=(180°-110°)2=35°,故选B.【点睛】本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.8、C【解析】

由点的横坐标为及点在直线上,可得点(2,4)得出图形平移规律进行计算即可.【详解】解:由点的横坐标为及点在直线上当x=2时,y=4∴(2,4)∴该图形平移规律为沿着x轴向右平移两个单位,沿着y轴向上平移4个单位∴(6,4)故答案选:C【点睛】本题考查了由函数图像推出点坐标,图形的平移规律,掌握图形的平移规律与点的平移规律是解决的关键.9、C【解析】

根据随机事件和必然事件的定义分别进行判断.【详解】A.3天内会下雨为随机事件,所以A选项错误;B.打开电视机,正在播放广告,是随机事件,所以B选项错误;C.367人中至少有2人公历生日相同是必然事件,所以C选项正确;D.a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.故选C.【点睛】此题考查随机事件,解题关键在于掌握其定义.10、B【解析】

利用最简二次根式定义判断即可.【详解】A、=,不符合题意;B、是最简二次根式,符合题意;C、(a>0)=|a|=a,不符合题意;D、=,不符合题意.故选:B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.二、填空题(每小题3分,共24分)11、1、、1﹣【解析】

过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF=,∵DF⊥AE,AD=1,∴∠DAE=45°,则BE=,∴当BE=时,△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,,x1﹣4x+1=0,解得:x=1±,∴当BE=1﹣时,△CDF是等腰三角形.综上,当BE=1、、1﹣时,△CDF是等腰三角形.故答案为:1、、1﹣.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.12、【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等边三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四边形AECF是平行四边形,∵CE=BC-BE=3-2=1,∴S四边形AECF=CE•AM=,故答案为:.【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.13、3【解析】

根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.14、1【解析】

先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.【详解】解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,∴△DEF的周长=3+4+5=1.故答案为:1.【点睛】本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15、y<1【解析】试题解析∵一次函数y=kx+b(k≠1)与x轴的交点坐标为(2,1),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<1.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为(-kx16、2【解析】

设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴当10-1x=0,即x=2时,y1最小值=12,∴y最小值=2.即MN的最小值为2;故答案为:2.【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.17、【解析】

根据新定义列出不等式即可求解.【详解】依题意得-3x+5≤11解得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.18、(,)【解析】

∵B(1,0),C(3,0),∴OB=1,OC=3,∴BC=2,过点N作EN∥OC交AB于E,过点A作AD⊥BC于D,NF⊥BC于F,∴∠ENM=∠BOM,∵OM=NM,∠EMN=∠BMO,∴△ENM≌△BOM,∴EN=OB=1,∵△ABC是正三角形,∴AD=,BD=BC=1,∴OD=2,∴A(2,),∴△AEN也是正三角形,∴AN=EN=1,∴AN=CN,∴N,∴M(,)故答案为(,)三、解答题(共66分)19、(1)1:3;(1)见解析;(3)5:3:1.【解析】

(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.20、(1)见解析,(2)BF=CG+DF.理由见解析.【解析】

(1)由题意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依据余角的性质求解即可;(2)在线段FB上截取FM,使得FM=FD,然后可证明△BDM∽△CDF,由相似三角形的性质可得到BM=FC,然后证明△CFG为等腰直角三角形,从而可得到CG=CF,然后可得到问题的答案.【详解】.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=FD.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∵,∴△BDM∽△CDF,∴,∠DBM=∠DCF,∴BM=CF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.【点睛】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.21、(1);(2)四月份比三月份节约用水3吨.【解析】

(1)根据函数图象和函数图象中的数据可以求得当用水量超过10吨时,y关于x的函数解析式;

(2)根据题意和函数图象可以分别求得三月份和四月份的用水量,从而可以解答本题.【详解】解:(1)设关于的解析式为,把,;,,代入中得,解得,关于的解析式为.(2)四月份水费27元小于30元,所以4月份用水量为:(吨)三月份水费为38元超过30元把代入中,得,(吨)所以四月份比三月份节约用水3吨.【点睛】考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用函数的思想解答.22、(1)四边形ABCD是垂美四边形,证明见解析(2)①,证明见解析;②四边形FMAN是矩形,证明见解析(3)【解析】

(1)根据垂直平分线的判定定理证明即可;(2)①根据垂直的定义和勾股定理解答即可;②根据在Rt△ABC中,点F为斜边BC的中点,可得,再根据△ABD和△ACE是等腰三角形,可得,再由(1)可得,,从而判定四边形FMAN是矩形;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.【详解】(1)四边形ABCD是垂美四边形连接AC、BD∵∴点A在线段BD的垂直平分线上∵∴点C在线段BD的垂直平分线上∴直线AC是线段BD的垂直平分线∴∴四边形ABCD是垂美四边形;(2)①,理由如下如图,已知四边形ABCD中,,垂足为E由勾股定理得②四边形FMAN是矩形,理由如下如图,连接AF∵在Rt△ABC中,点F为斜边BC的中点∵△ABD和△ACE是等腰三角形由(1)可得,∵∴四边形FMAN是矩形;(3)连接CG、BE,,即在△AGB和△ACE中∵,即∴四边形CGEB是垂美四边形由(2)得.【点睛】本题考查了垂美四边形的问题,掌握垂直平分线的判定定理、垂直的定义、勾股定理、垂美四边形的性质、全等三角形的性质以及判定定理是解题的关键.23、2.【解析】

分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.详解:(a+)÷=[+]•=•=•=,当a=1时,原式==2.点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.24、(1)(2)见解析【解析】

(1)首先证明CE⊥AF,想办法求出CD,AE即可解决问题.(2)证明:如图2中,连接BE,作EK⊥AC于K.利用全等三角形的性质证明AG=EK=KG,即可解决问题.【详解】(1)解:如图1中,∵CA=CF,AE=EF,∴CE⊥AF,∵CE=1,∠F=30°,∴CF=CA=2CE=2,AE=EF=,∵四边形ABCD平行四边形,∴AD∥CF,∴∠D=∠ECF,∵∠AED=∠CEF,AE=EF,∴△ADE≌△FCE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论