版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省庐江县联考2024届数学八年级下册期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(
)A.甲 B.乙 C.丙 D.丁2.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和3.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2004.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B. C. D.25.下列说法正确的是().A.的平方根是 B.是81的一个平方根C.0.2是0.4的算术平方根 D.负数没有立方根6.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是()A. B. C. D.7.要使代数式有意义,则的取值范围是()A. B. C. D.且8.如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是()A.七年级借阅文学类图书的人数最多B.八年级借阅教辅类图书的人数最少C.两个年级借阅文学类图书的人数最多D.七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同9.若等腰三角形底边长为8,腰长是方程的一个根,则这个三角形的周长是()A.16 B.18 C.16或18 D.2110.如图,函数()和()的图象相交于点A,则不等式>的解集为()A.> B.< C.> D.<11.下列所给图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.12.如果p(2,m),A(1,1),B(4,0)三点在同一条直线,那么m的值为()A.2 B.- C. D.1二、填空题(每题4分,共24分)13.抛物线的顶点坐标是__________.14.用反证法证明“如果,那么.”是真命题时,第一步应先假设________
.15.已知关于的一元二次方程有两个相等的实数根,则的值是__________.16.要使在实数范围内有意义,a应当满足的条件是_____.17.比较大小2_____.18.函数为任意实数)的图象必经过定点,则该点坐标为____.三、解答题(共78分)19.(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.20.(8分)如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B。(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接E,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围。21.(8分)(1)计算:40372﹣4×2018×2019;(2)将边长为1的一个正方形和一个底边为1的等腰三角形如图摆放,求△ABC的面积.22.(10分)如图,已知直线:与x轴,y轴的交点分别为A,B,直线:与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.(1)求实数b的值;(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.23.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.24.(10分)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.(1)求证:▱ABCD为矩形;(2)若AB=4,求▱ABCD的面积.25.(12分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形?26.武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:(1)组的人数是____人,并补全条形统计图.(2)本次调查的众数是_____等,中位数落在_____等.(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.
参考答案一、选择题(每题4分,共48分)1、B【解析】
先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.2、C【解析】
根据勾股定理得到c1=a1+b1,根据正方形的面积公式、长方形的面积公式计算即可.【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c1=a1+b1,阴影部分的面积=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.3、D【解析】
由中位数、众数、平均数及方差的意义逐一判断可得.【详解】解:A.前一组数据的中位数是200,正确,此选项不符合题意;B.前一组数据的众数是200,正确,此选项不符合题意;C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;D.后一组数据的方差等于前一组数据的方差,此选项符合题意;故选D.【点睛】本题考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.4、C【解析】试题解析:设,因为,,所以,在与中,所以∽,那么,,则,解得,故本题应选C.5、B【解析】
依据平方根、算术平方根、立方根的性质解答即可.【详解】A.的平方根是±,故A错误,;B.−9是81的一个平方根,故B正确,;C.0.04的算术平方根是0.2,故C错误,;D.负数有立方根,故D错误.故选:B.【点睛】此题考查平方根,算术平方根,立方根,解题关键在于掌握运算法则.6、C【解析】
四个小三角形的周长是两条对角线长与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD.四个小三角形的周长=4AC+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为1.故选:C.【点睛】本题主要考查了矩形的性质,矩形的对角线相等是解题的关键.7、B【解析】
根据二次根式的被开方数x+1是非负数列不等式求解即可.【详解】要使有意义,∴,解得,,故选:B【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8、D【解析】
根据扇形统计图的特点即可判断.【详解】解:A.七年级借阅文学类图书的人数最多,正确;B.八年级借阅教辅类图书的人数最少,正确;C.两个年级借阅文学类图书的人数最多,正确;由题意可得本题的总量无法确定,故不能确定哪个年级借阅图书的具体人数.故选:D.【点睛】此题主要考查扇形统计图的信息,解题的关键是熟知扇形统计图的特点.9、B【解析】
先把方程的根解出来,然后分别让两个根作为腰长,再根据三角形三边关系判断是否能组成三角形,即可得出答案.【详解】解:∵腰长是方程的一个根,解方程得:∴腰长可以为4或者5;当腰长为4时,三角形边长为:4,4,8,∵,根据三角形三边长度关系:两边之和要大于第三边可得:4,4,8三条线段不能构成三角形,∴舍去;当腰长为5时,三角形边长为:5,5,8,经检验三条线段可以构成三角形;∴三角形的三边长为:5,5,8,周长为:18.故答案为B.【点睛】本题考查一元二次方程的解,以及三角形三边关系的验证,当涉及到等腰三角形的题目要进行分类讨论,讨论后一定不要忘记如果求得三角形的三边长,必须根据三角形三边关系再进行判断,看求得的三边长度是否能构成三角形.10、A【解析】试题解析:由图象可以看出当时,的图象在图象的上方,所以的解集为.故本题应选A.11、D【解析】
结合中心对称图形和轴对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是中心对称图形,又是轴对称图形.故本选项正确;
故选:D.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12、C【解析】
先设直线的解析式为y=kx+b(k≠0),再把A(1,1),B(4,0)代入求出k的值,进而得出直线AB的解析式,把点P(2,m)代入求出m的值即可.【详解】解:设直线的解析式为y=kx+b(k≠0),
∵A(1,1),B(4,0),
∴,解得,
∴直线AB的解析式为y=x+,
∵P(2,m)在直线上,
∴m=()×2+=.
故选C.“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每题4分,共24分)13、【解析】
根据顶点式函数表达式即可写出.【详解】抛物线的顶点坐标是故填【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的解析式特点.14、a≥0【解析】
用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.【详解】解:“如果,那么.”是真命题时
,用反证法证明第一步应假设.故答案为:【点睛】本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.15、【解析】
根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.【详解】原方程化为一般形式为:mx2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.16、a⩽3.【解析】
根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.【详解】∵在实数范围内有意义,∴3−a⩾0,解得a⩽3.故答案为:a⩽3.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.17、<【解析】
直接利用二次根式的性质将原数变形进而得出答案.【详解】∵2=<.故答案为:<.【点睛】本题主要考查了实数大小比较,正确将原数变形是解题的关键.18、(1,2)【解析】
先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.【点睛】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.三、解答题(共78分)19、(1)证明见解析(2)3【解析】试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.试题解析:(1)证明:∵AB="2CD",E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考点:1.梯形的性质;2.平行四边形的判定与性质;3.相似三角形的判定与性质.20、(1)A(4,0),B(0,8);(2)S△PAO=−4m+16(0<m<4);【解析】
(1)利用待定系数法即可解决问题;(2)连接OP,根据三角形的面积公式S△PAO=×OA×PE计算即可;【详解】(1)令x=0,则y=8,∴B(0,8),令y=0,则−2x+8=0,∴x=4,∴A(4,0),(2)连接OP.∵点P(m,n)为线段AB上的一个动点,∴−2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=×OA×PE=×4×n=2(−2m+8)=−4m+16(0<m<4);【点睛】此题考查一次函数综合题,解题关键在于利用待定系数法求解.21、(1)1;(2).【解析】
(1)根据完全平方公式进行计算,即可得出答案;(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,利用正方形和等腰三角形的性质得出CE的长,进而得出△ABC的面积即可.【详解】(1)40372﹣4×2018×2019=(2019+2018)2﹣4×2018×2019=20192+2×2019×2018+20182-4×2018×2019=20192-2×2019×2018+20182=(2019﹣2018)2=12=1.(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,∵△BCF是等腰三角形,∴DB=BF,∵四边形ABFG是正方形,∴∠FBE=90°,∴四边形BECD是矩形,∵BF=1,∴CE=BD=BF,∴△ABC的面积=AB•CE=×1×=.【点睛】本题考查正方形的性质、等腰三角形的性质及矩形的判定,熟练掌握等腰三角形“三线合一”的性质是解题关键.22、(2)2;(2)a=5或-2.【解析】
(2)利用一次函数图象上点的坐标特征,由点E在直线上可得到点E的坐标,由点E在直线上,进而得出实数b的值;
(2)依据题意可得MN=|2+a−(2−a)|=|a−2|,BO=2.当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,即可得到|a-2|=2,进而得出a的值.【详解】解:(2)∵点E在直线l2上,且点E的横坐标为2,
∴点E的坐标为(2,2),
∵点E在直线l上,
∴2=−×2+b,
解得:b=2;
(2)如图,当x=a时,yM=2−a,yN=2+a,
∴MN=|2+a−(2−a)|=|a−2|,
当x=0时,yB=2,
∴BO=2.
∵BO∥MN,
∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,
此时|a-2|=2,
解得:a=5或a=-2.
∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或-2.故答案为:(2)2;(2)a=5或-2.【点睛】本题考查一次函数图象上点的坐标特征、平行四边形的性质以及解一元一次方程,熟练掌握平行四边形的性质是解题的关键.23、(1)菱形(2)1【解析】
(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形;(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.【详解】(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)∵四边形ABCD是矩形,∴AC===5,∴CO=OD=,∴四边形OCED的周长=4×=1.【点睛】此题考查了菱形的判定与性质以及矩形的性质.根据连线的判定定理证得四边形CODE是菱形是解此题的关键.24、(1)见解析;(2).【解析】
(1)根据题意可求OA=OB=DO,∠AOB=60°,可得∠BAD=90°,即结论可得;(2)根据勾股定理可求AD的长,即可求▱ABCD的面积.【详解】解(1)∵△AOB为等边三角形∴∠BAO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026春招:医疗器械笔试题及答案
- 2026年消防设施的远程监控与控制设计
- 贺新郎辛弃疾课件
- 2026春招:无人机组装测试真题及答案
- 贯标培训课件
- 货运公司安全培训简报课件
- 消化系统疾病诊断与治疗新方法
- 医疗大数据在公共卫生事件预警与应对中的应用
- 医院医疗设备购置规划总结
- 2026年渤海船舶职业学院高职单招职业适应性考试备考试题有答案解析
- 施工员个人工作总结课件
- 四川省泸州市2026届数学高二上期末统考试题含解析
- 2026湖北武汉市文旅集团市场化选聘部分中层管理人员4人笔试参考题库及答案解析
- 中国金融电子化集团有限公司2026年度校园招聘备考题库及一套完整答案详解
- 生物实验探究教学中学生实验探究能力培养与评价体系研究教学研究课题报告
- 校园跑腿行业数据分析报告
- 2025年塔吊指挥员考试题及答案
- 2025福建闽投永安抽水蓄能有限公司招聘21人备考题库附答案
- 雨课堂在线学堂《社会研究方法》作业单元考核答案
- 测定直流电源的参数并研究其输出特性
- 2021年云南公务员考试行测试题及答案
评论
0/150
提交评论