2024届黑龙江省桦南县数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
2024届黑龙江省桦南县数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
2024届黑龙江省桦南县数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
2024届黑龙江省桦南县数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
2024届黑龙江省桦南县数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省桦南县数学八年级下册期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.22.交警在一个路口统计的某个时段来往车辆的分布如条形图所示.请找出这些车辆速度的众数、中位数分别是()A.52,53 B.52,52 C.53,52 D.52,513.运用分式的性质,下列计算正确的是()A. B. C. D.4.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)25.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形6.如图,中,点在边上,点在边上,且,则与相似的三角形的个数为()A.4个 B.3个 C.2个 D.1个7.下列二次根式中,是最简二次根式的为()A. B. C. D.8.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、 D.5、12、139.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣511.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形12.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.30° B.40° C.50° D.65°二、填空题(每题4分,共24分)13.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).14.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.15.定义运算“*”为:a*b,若3*m=-,则m=______.16.如图所示,在四边形中,,分别是的中点,,则的长是___________.17.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.18.矩形中,对角线交于点,,则的长是__________.三、解答题(共78分)19.(8分)如图,△ABC中,A(-1,1),B(-4,2),C(-3,4).(1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;(2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;(3)请直接写出点B2、C2的坐标.20.(8分)如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.21.(8分)先化简,再求值:),其中.22.(10分)小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?23.(10分)关于x的一元二次方程有实数根.(1)求k的取值范围;(2)若k是该方程的一个根,求的值.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)152025……y(件)252015……25.(12分)先化简再求值,其中x=-1.26.如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.(1)若点的坐标是,则,;(2)设直线与轴分别交于点,求证:是等腰三角形;(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:∵A(2,−2),①如图:若OA=AP,则②如图:若OA=OP,则③如图:若OP=AP,则综上可得:符合条件的点P有四解.故选B.点睛:等腰三角形的问题,一般都分类讨论.2、B【解析】

根据众数、中位数的意义,分别求出众数、中位数,再做出选择即可.【详解】车速出现次数最多的是52千米/时,因此车速的众数是52,一共调查27辆车,将车速从小到大排列后,处在中间的一个数是52,因此中位数是52,故选:B.【点睛】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是得出答案的前提.3、D【解析】

根据分式的分子分母都乘以(或者除以)同一个整式,分式的值不变,可解答【详解】A、分子分母都除以x2,故A错误;B、分子分母都除以(x+y),故B错误;C、分子分母都减x,分式的值发生变化,故C错误;D、分子分母都除以(x﹣y),故D正确;故选:D.【点睛】此题考查分式的基本性质,难度不大4、A【解析】

x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.【点睛】本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.5、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.6、C【解析】

由∠1=∠2=∠3,即可得DE∥BC,可得∠EDC=∠BCD,然后根据有两组角对应相等的两个三角形相似,即可判定△ADE∽△ABC,△ACD∽△ABC,又由相似三角形的传递性,可得△ADE∽△ABC∽△ACD,继而求得答案.【详解】∵∠1=∠2,∴DE∥BC,∴∠EDC=∠DCB,△ADE∽△ABC,∵∠2=∠3,∠A=∠A,∴△ACD∽△ABC,∴△ADE∽△ABC∽△ACD,∴图中与△ADE相似三角形共有2对.故选C.【点睛】此题考查了相似三角形的判定.此题难度不大,解题的关键是掌握有两组角对应相等的两个三角形相似定理的应用,注意数形结合思想的应用.7、C【解析】试题解析:A、,被开方数含分母,不是最简二次根式;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选C.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8、C【解析】

解:A.32+42=52,故是直角三角形,故A选项不符合题意;

B.62+82=102,故是直角三角形,故B选项不符合题意;C.,故不是直角三角形,故C选项符合题意;

D.52+122=132,故是直角三角形,故D选项不符合题意.

故选:C.考点:直角三角形的判定9、D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.10、A【解析】

分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.11、A【解析】

根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,

∴OA=OC,OB=OD,

∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);

故选:A.【点睛】本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.12、C【解析】

解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×65°=50°,∴∠CAC′=∠BAB′=50°故选C.二、填空题(每题4分,共24分)13、乙【解析】

直接根据方差的意义求解.方差通常用s2来表示,计算公式是:s2=[(x1-x¯)2+(x2-x¯)2+…+(xn-x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.14、1【解析】

∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.15、—2【解析】

试题分析:根据定义运算“*”:a*b,即可得方程,在解方程即可得到结果.解:由题意得,解得.考点:新定义运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.16、【解析】

根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.【详解】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,

∴PN,PM分别是△CDB与△DAB的中位线,

∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,

∵AB=CD,

∴PM=PN,

∴△PMN是等腰三角形,

∵PM∥AB,PN∥DC,

∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,

∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,

∴∠PMN==30°.过P点作PH⊥MN,交MN于点H.∵HQ⊥MN,

∴HQ平分∠MHN,NH=HM.

∵MP=2,∠PMN=30°,

∴MH=PM•cos60°=,

∴MN=2MH=2.【点睛】本题考查了三角形中位线定理及等腰三角形的判定和性质、30°直角三角形性质,解题时要善于根据已知信息,确定应用的知识.17、57.5【解析】

根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.18、【解析】

根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。【详解】解:如图,在矩形ABCD中,OA=OC,∵∠AOB=60°,∠ABC=90°∴∠BAC=30°∴AC=2BC设BC=x,则AC=2x∴解得x=,则AC=2x=2∴AO==.【点睛】本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。三、解答题(共78分)19、(1)见解析(2)见解析(3)B2(4,-2)、C2(3,-4)【解析】

(1)首先将A、B、C点的坐标向右平移5单位,在将其连接即可.(2)首先将A、B、C点的坐标关于原点的对称点,在将其连接即可.(3)观察直角坐标写出坐标.【详解】(1)首先将A、B、C点的坐标向右平移5单位,并将其连接如图所示.(2)首先将A、B、C点的坐标关于原点的对称点,在将其连接如图所示.(3)根据直角坐标系可得B2(4,-2)、C2(3,-4)【点睛】本题主要考查直角坐标系的综合题,应当熟练掌握.20、(1),5,,;(2)直角三角形.【解析】

(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD的形状;由勾股定理的逆定理得出△ABC是直角三角形.【详解】解:(1)由勾股定理得AB==,BC==5,CD==2;(2)∵AC==2,AD==2,∴AC=AD,∴△ACD是等腰三角形;∵AB2+AC2=5+20=25=BC2,∴△ABC是直角三角形.【点睛】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.21、,.【解析】试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.试题解析:原式===,当时,原式===.考点:分式的化简求值.22、(1)a=10,b=15,m=200;(2)750米;(3)17.5或20分.【解析】

(1)根据时间=路程÷速度,即可求出a的值,结合休息的时间为5分钟,即可求出b的值,再根据速度=路程÷时间,求出m的值;(2)根据数量关系找出线段BC、OD所在的直线函数解析式,联立方程即可求出即可;(3)根据(2)结论,结合二者之间相距100米,即可得到关于x的绝对值的关系式,然后分类求解即可.【详解】(1)a=1500,b=a+5=15,m=(3000-1500)(22.5-15)=200故答案为10,15,200;(2)∵B(15,1500),C(22.5,3000)∴BC段关系式为:∵小军的速度是120米/分,∴OD段关系式为:相遇时,即,即120x=200x-1500,解得:x=18.75,此时:=2250,距离图书馆:3000-2250=750(米),(3)由题意可得:||=100,所以:当=100时,解得x=20,当时,解得x=17.5.∴爸爸出发17.5分钟或20分钟时,自第二次出发至到达图书馆前与小军相距100米23、(1)k≤5;(2)3.【解析】

(1)根据判别式的意义得到△=22-4(k-4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k-5=2(k2+3k)-5,然后利用整体代入的方法计算.【详解】(1)∵有实数根,∴Δ≥0即.∴k≤5(2)∵k是方程的一个根,∴∴=3【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.24、(1)y=﹣x+1;(2)200元【解析】

(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.

(2)把x=30代入函数式求y,根据:(售价-进价)×销售量=利润,求解.【详解】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).则解得即一次函数解析式为y=﹣x+1.(2)当x=30时,每日的销售量为y=﹣30+1=10(件)每日所获销售利润为(30﹣10)×10=200(元)【点睛】本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.25、.【解析】原式.当时,原式26、(1),.(2)详见解析;(3),理由详见解析.【解析】

(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论