版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年云南师范大实验中学八年级下册数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.使分式有意义的的值是()A. B. C. D.2.下列各式,计算结果正确的是()A.×=10 B.+= C.3-=3 D.÷=33.下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是()A. B.C. D.4.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.6,8,11 D.7,24,255.如图,在中,,,,为边上一个动点,于点,上于点,为的中点,则的最小值是()A. B.C. D.6.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.47.反比例函数图象上有,两点,则与的大小关系是()A. B. C. D.不确定8.赵老师是一名健步走运动的爱好者为备战2019中国地马拉松系列赛·广元站10千米群众健身赛,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图在每天健步走的步数这组数据中,众数和中位数分别是()A.2.2,2.3 B.2.4,2.3 C.2.4,2.35 D.2.3,2.39.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°10.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则:(1)AB的长为____________.(2)PM+PN的最小值为____________.12.等腰三角形中,两腰上的高所在的直线所形成的锐角为35°,则等腰三角形的底角为___________13.在□ABCD中,一角的平分线把一条边分成3cm和4cm两部分,则□ABCD的周长为__________.14.当时,二次根式的值是_________.15.若最简二次根式和是同类二次根式,则______.16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.17.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.18.y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.三、解答题(共66分)19.(10分)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.20.(6分)计算:+(﹣1)2﹣21.(6分)解不等式组:,并把解集表示在数轴上.22.(8分)已知:如图,在菱形ABCD中,BE⊥AD于点E,延长AD至F,使DF=AE,连接CF.(1)判断四边形EBCF的形状,并证明;(2)若AF=9,CF=3,求CD的长.23.(8分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点.如:线段AB的两个端点都在格点上.(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;(3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.24.(8分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.25.(10分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).(1)填空:_________,_________.(2)补全频数分布直方图.(3)该校有2000名学生,估计这次活动中爱心捐款额在的学生人数.26.(10分)如图,在平面直角坐标系中,菱形的顶点在反比例函数图象上,直线交于点,交正半轴于点,且求的长:若,求的值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
分式有意义的条件是分母不等于0,即x﹣1≠0,解得x的取值范围.【详解】若分式有意义,则x﹣1≠0,解得:x≠1.故选D.【点睛】本题考查了分式有意义的条件:当分母不为0时,分式有意义.2、D【解析】分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.详解:A、原式=,所以A选项错误;B、与不是同类二次根式,不能合并,所以B选项错误;C、原式=2,所以C选项错误;D、原式=,所以D选项正确.故选:D.点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、C【解析】
根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.【详解】A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;故选:C.【点睛】本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.4、D【解析】
将两短边的平方相加,与最长边的平方进行比较,由此即可得出结论.【详解】解:A、∵22+32=13,42=16,13≠16,∴以2、3、4为边长的三角形不是直角三角形;B、∵32+42=25,62=36,25≠36,∴以3、4、6为边长的三角形不是直角三角形;C、∵62+82=100,112=121,100≠121,∴以6、8、11为边长的三角形不是直角三角形;D、∵72+242=625,252=625,625=625,∴以7、24、24为边长的三角形是直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.5、A【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即等于,
∴AM的最小值是
故选A.【点睛】本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.6、C【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7、B【解析】
根据反比例函数解析式,判断出反比例函数的增减性,根据增减性判断与的大小即可.【详解】由反比例函数的k的值为负数,∴各象限内,y随x的增大而增大,∵−2>−3,∴>,故选B【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于判断出反比例函数的增减性8、B【解析】
中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【详解】由条形统计图中出现频数最大条形最高的数据是在第四组,故众数是2.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是2.3(万步),故中位数是2.3(万步).故选B.【点睛】此题考查中位数,条形统计图,解题关键在于看懂图中数据9、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、C【解析】
由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.二、填空题(每小题3分,共24分)11、4;2.【解析】
过点A作,垂足为G,依据等腰三角形的性质可得到,设,则,,然后依据三角形的面积公式列方程求解即可;作点A关于BC的对称点,取,则,过点作,垂足为D,当、P、M在一条直线上且时,有最小值,其最小值.【详解】(1)如图所示:过点A作AG⊥BC,垂足为G,∵AB=AC,∠BAC=120°,∴∠ABC=30°,设AB=x,则AG,BGx,则BCx,∴BC•AG•x•x=8,解得:x=4,∴AB的长为4,故答案为:4;(2)如图所示:作点A关于BC的对称点A',取CN=CN',则PN=PN',过点A'作A'D⊥AB,垂足为D,当N'、P、M在一条直线上且MN'⊥AB时,PN+PM有最小值,最小值=MN'=DA'AB=2,故答案为:2.【点睛】本题考查了翻折的性质、轴对称最短路径、垂线段的性质,将的长度转化为的长度是解题的关键.12、17.5°或72.5°【解析】
分两种情形画出图形分别求解即可解决问题.【详解】解:①如图,当∠BAC是钝角时,由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,∴∠BAC=∠EAD=360°-90°-90°-35°=145°,∴∠ABC=;②如图,当∠A是锐角时,由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,∴∠DHE=145°,∴∠A=360°-90°-90°-115°=35°,∴∠ABC=;故答案为:17.5°或72.5°.【点睛】本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.13、2cm或22cm【解析】如图,设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∵∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.∴BC=3+4=1.①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.所以□ABCD的周长为22cm或2cm.故答案为:22cm或2cm.点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.14、3【解析】
根据题意将代入二次根式之中,然后进一步化简即可.【详解】将代入二次根式可得:,故答案为:3.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.15、4【解析】
根据被开方数相同列式计算即可.【详解】∵最简二次根式和是同类二次根式,∴a-1=11-2a,∴a=4.故答案为:4.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.16、2【解析】
证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.【点睛】此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.17、1【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.18、1【解析】
根据一次函数的定义可得【详解】解:∵y=(2m﹣1)x3m﹣2+3是一次函数,∴解得m=1.故答案为1.【点睛】考核知识点:一次函数.理解定义是关键.三、解答题(共66分)19、(1)证明见解析;(2).【解析】
(1)截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;(2)取AB中点M,连接EM,求出BM=BE,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.【详解】(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°∵CF是正方形的∠C外角的平分线,∴∠ECF=90°+45°=135°∴∠AME=∠ECF,∵AB=BC,BM=BE,∴AM=EC,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∵∠BAE+∠AEB=90°,∴∠BAE=∠CEF,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.20、1【解析】
先利用完全平方公式计算,然后把二次根式化为最简二次根式后合并即可.【详解】原式=3+3﹣2+1﹣=1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、-2≤x<2【解析】
先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解:∵解不等式①得:x<2,解不等式②得:x≥-2,∴不等式组的解集为-2≤x<2,在数轴上表示为:【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集等知识点,能求出不等式组的解集是解此题的关键.22、(1)四边形EBCF是矩形,证明见解析;(2)CD=5【解析】
(1)由菱形的性质证得EF=BC,由此证明四边形EBCF是平行四边形.,再利用BE⊥AD即可证得四边形EBCF是矩形;(2)设CD=x,根据菱形的性质及矩形的性质得到DF=9-x,再利用勾股定理求出答案.【详解】(1)四边形EBCF是矩形证明:∵四边形ABCD菱形,∴AD=BC,AD∥BC.又∵DF=AE,∴DF+DE=AE+DE,即:EF=AD.∴EF=BC.∴四边形EBCF是平行四边形.又∵BE⊥AD,∴∠BEF=90°.∴四边形EBCF是矩形.(2)∵四边形ABCD菱形,∴AD=CD.∵四边形EBCF是矩形,∴∠F=90°.∵AF=9,CF=3,∴设CD=x,则DF=9-x,∴,解得:∴CD=5.【点睛】此题考查菱形的性质,矩形的判定定理及性质定理,勾股定理,熟记各定理是解题的关键.23、(1)答案见详解;(1),;(3)1.【解析】
(1)如图1中,根据平行四边形的定义,画出第为5,高为3的平行四边形即可.(1)如图1中,根据菱形的判定画出图形即可.(3)根据矩形的定义画出图形即可.【详解】解:(1)如图1中,平行四边形即为所求;(1)如图1中,菱形即为所求.,,故答案为,;(3)如图3中,矩形即为所求,;故答案为1.【点睛】本题考查勾股定理,菱形的性质,矩形的性质等知识,熟练掌握基本知识是解题的关键.24、(1)y=x+1;(2)见解析.【解析】
(1)设一次函数的解析式是y=kx+b,把A(0,1)、B(2,4)代入得出方程组,求出方程组的解即可;
(2)过A、B作直线即可;【详解】(1)解:设一次函数的解析式是y=kx+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025~2026学年北京市丰台区新北赋学校高三上学期期中练习数学试卷
- 跆拳道馆接待话术
- 甲壳类繁育工安全技术规程
- 公司硅烷偶联剂生产工职业健康技术规程
- 废塑料加工处理工班组管理强化考核试卷含答案
- 保健拔罐师安全管理水平考核试卷含答案
- 链传动部件制造工安全意识模拟考核试卷含答案
- 气切误吸应急预案(3篇)
- 北体大运动训练学课件第1章 竞技体育与运动训练
- 辽宁省辽阳县集美学校2026届数学高二第一学期期末经典模拟试题含解析
- 温通刮痧技术操作流程图及考核标准
- 人教版小学一年级语文上册期末试卷(5份)
- 2025年宁波市水务环境集团有限公司招聘笔试参考题库含答案解析
- 真需求-打开商业世界的万能钥匙
- 专题08 图形的运动-平移4种常见压轴题型全攻略(解析版)
- T-CCSAS046-2023常压立式圆筒形钢制焊接储罐泄漏检测实施指南
- 歌曲《wake》中英文歌词对照
- 2024年京东商家入驻协议模板
- 医院培训课件:《腕踝针》
- GB/T 7247.1-2024激光产品的安全第1部分:设备分类和要求
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
评论
0/150
提交评论