2024年吉林省松原市第一中学数学八年级下册期末经典模拟试题含解析_第1页
2024年吉林省松原市第一中学数学八年级下册期末经典模拟试题含解析_第2页
2024年吉林省松原市第一中学数学八年级下册期末经典模拟试题含解析_第3页
2024年吉林省松原市第一中学数学八年级下册期末经典模拟试题含解析_第4页
2024年吉林省松原市第一中学数学八年级下册期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年吉林省松原市第一中学数学八年级下册期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.以下运算错误的是()A. B.C. D.2.4名选手在相同条件下各射靶10次,统计结果如下表,表现较好且更稳定的是()选手甲乙丙丁平均环数99.599.5方差4.5445.4A.甲 B.乙 C.丙 D.丁3.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为()A. B. C.1 D.24.我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是()A.40 B.50 C.57 D.755.下列根式是最简二次根式的是()A.12 B.0.3 C.3 D.6.已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<07.不等式的正整数解的个数是()A.7个 B.6个 C.4个 D.0个8.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组 B.9组 C.8组 D.7组9.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则()A. B. C. D.10.如表是某公司员工月收入的资料.能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数 B.平均数和中位数 C.中位数和众数 D.平均数和方差11.下列各式中计算正确的是()A. B. C. D.12.正方形具有而菱形不一定具有的性质是()A.四边相等 B.对角线相等 C.对角线互相垂直 D.对角线互相平分二、填空题(每题4分,共24分)13.用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.14.一个多边形每个外角都是,则这个多边形是_____边形.15.如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.16.若方程(k为常数)有两个不相等的实数根,则k取值范围为.17.若某人沿坡度在的斜坡前进则他在水平方向上走了_____18.如果关于x的分式方程有增根,那么m的值为______.三、解答题(共78分)19.(8分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,(1)求证:四边形DBCF是平行四边形(2)若∠A=30°,BC=4,CF=6,求CD的长20.(8分)如图,在四边形中,的平分线交于点的平分线交于点,交于点,且.(1)求证:四边形是平行四边形;(2)若,求线段的长.21.(8分)如图1,是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一四柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与注水时间关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙.两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),则乙槽中铁块的体积为立方厘米.22.(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.23.(10分)如图1,直线y=﹣x+6与y轴于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.(1)求点B的坐标;(2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.24.(10分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.25.(12分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P,F,G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.26.已知正比例函数与反比例函数.(1)证明:直线与双曲线没有交点;(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时

参考答案一、选择题(每题4分,共48分)1、B【解析】A.,正确;B.=5,则原计算错误;C.,正确;D.,正确,故选B.2、B【解析】

先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.【详解】解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,

∴表现较好且更稳定的是乙,

故选:B.【点睛】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、A【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故选A.4、B【解析】

根据众数的定义求解即可.【详解】在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.故选B.【点睛】此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5、C【解析】

根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【详解】A、12B、0.3=C、3是最简二次根式,故此选项正确;D、12=23故选:C.【点睛】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.6、D【解析】试题分析:在不等式的左右两边同时加上或减去同一个数,则不等式仍然成立;在不等式的左右两边同时乘以或除以一个正数,则不等式仍然成立;在不等式的左右两边同时乘以或除以一个负数,则不等符号需要改变.考点:不等式的性质7、B【解析】

先解不等式求得不等式的解集,再确定正整数解即可.【详解】3(x+1)>2(2x+1)-63x+3>4x+2-63x-4x>2-6-3-x>-7x<7∴不等式的正整数解为1、2、3、4、5、6,共6个.故选B.【点睛】本题考查了求一元一次不等式的正整数解,正确求得不等式的解集是解决本题的关键.8、A【解析】

在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.故选A.【点睛】此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.9、B【解析】

根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.10、C【解析】

求出数据的众数和中位数,再与25名员工的收入进行比较即可.【详解】该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为3400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选C.【点睛】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.11、D【解析】

根据二次根式的加减法则对各选项进行逐一分析即可.【详解】A.不是同类项,不能合并,故本选项错误.B.,故本选项错误.C.=,故本选项错误D.,本选项正确,故选D【点睛】本题考查二次根的混合运算,熟练掌握计算法则是解题关键12、B【解析】

观察四个选项,分别涉及了四条边和对角线,我们应对照正方形和菱形边及对角线的性质,找出不同即可.【详解】正方形和菱形的四条边均相等,每条对角线均平分一组对角,正方形两条对角线相等且互相垂直平分,菱形对角线互相垂直且平分,但不相等.故选B.【点睛】本题考查了正方形和菱形性质的知识,解决本题的关键是熟练掌握正方形和菱形的性质.二、填空题(每题4分,共24分)13、3y2+3y﹣2=1【解析】

设,则原方程化为3y﹣+3=1,,再整理即可.【详解】﹣+3=1,设=y,则原方程化为:3y﹣+3=1,即3y2+3y﹣2=1,故答案为:3y2+3y﹣2=1.【点睛】本题考查了解分式方程,能够正确换元是解此题的关键.14、十二【解析】

利用任何多边形的外角和是360°即可求出答案.【详解】多边形的外角的个数是360÷30=1,所以多边形的边数是1.故答案为:十二.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.15、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-216、【解析】

根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,【详解】解:∵方程(k为常数)的两个不相等的实数根,∴>0,且,解得:k<1,故答案为:.【点睛】本题主要考查了根的判别式,掌握根的判别式是解题的关键.17、【解析】

根据坡度的概念得到∠A=45°,根据正弦的概念计算即可.【详解】如图,斜坡的坡度,,,故答案为:.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度及坡角的定义,熟练勾股定理的表达式.18、-4【解析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】解:,去分母,方程两边同时乘以,得:,由分母可知,分式方程的增根可能是2,当时,,.故答案为.【点睛】考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.三、解答题(共78分)19、(1)见解析(2)2【解析】

(1)根据对角线互相平分即可证明;(2)由四边形DBCF是平行四边形,可得CF∥AB,DF∥BC,可得∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,由直角三角形的性质得到FG,CG,GD的长,由勾股定理即可求解.【详解】(1)∵E为CD的中点,∴CE=DE,又EF=EB∴四边形DBCF是平行四边形(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC,∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,在Rt△FCG中,CF=6,∴FG=12CF=3,CG=3∵DF=BC=4,∴DG=1,∴在Rt△DCG中,CD=C【点睛】此题主要考查平行四边形的判定与性质,解题的关键是熟知含30°的直角三角形的性质.20、(1)见详解;(2)1.【解析】

(1)证出∠GBC+∠GCB=90°,由角平分线的定义得出∠ABC=2∠GBC,∠BCD=2∠DCF,得出∠ABC+∠BCD=180°,证出AB∥CD,即可得出结论;(2)由平行四边形的性质得出AD∥BC,DC=AB=,AD=BC=6,由平行线的性质和角平分线定义证出∠AEB=∠ABE,得出AE=AB=,同理:DF=DC,得出AE=DF,AF=DE,证出2AB=AD+EF,即可得出结果.【详解】(1)证明:∵BE⊥CF,∴∠BGF=90°,∴∠GBC+∠GCB=90°,∵∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,∴∠ABC=2∠GBC,∠BCD=2∠DCF,∴∠ABC+∠BCD=180°,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=,AD=BC=6,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=,同理:DF=DC,∴AE=DF,∴AF=DE,∵AE+DF=AD+EF,∴2AB=AD+EF,∴EF=2AB−AD=9−6=1.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明△ABE是等腰三角形是解题的关键.21、(1)乙;甲;乙槽中铁块的高度为14cm;(2)当2分钟时两个水槽水面一样高;(3)84.【解析】

(1)根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;(2)分别求出两个水槽中y与x的函数关系式,令y相等即可得到水位相等的时间;(3)用水槽的体积减去水槽中水的体积即可得到铁块的体积;【详解】解:(1)根据图像可知,折线ABC表示乙槽中水的深度与注水时间关系,线段DE表示甲槽中水的深度与注水时间之间的关系,点B的纵坐标表示的实际意义是:乙槽中铁块的高度为14cm;故答案为:乙;甲;乙槽中铁块的高度为14cm;(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)∴,解得:,∴解析式为y=3x+2和y=-2x+12,令3x+2=-2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(3)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为acm2,则乙水槽中不放铁块的体积分别为:2.5×36cm3,∴放了铁块的体积为:3×(36-a)cm3,∴1×3×(36-a)=1×2.5×36,解得a=6,∴铁块的体积为:6×14=84(cm3),故答案为:84.【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.22、(1)(2,6);(2)作图见解析,点B'的坐标(0,-6);(3)(-7,3),(3,3),(-5,-3)【解析】

(1)点B关于点A对称的点的坐标为(2,6);(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【详解】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,-6);(3)当以AB为对角线时,点D坐标为(-7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(-5,-3).【点睛】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23、(1)B(3,0)(2)G(2,2);(3)E(﹣2,0).【解析】

(1)根据题意可先求出点A和点D的坐标,然后根据勾股定理求出AD,设BC=OB=x,则BD=8-x,在直角三角形BCD中根据勾股定理求出x,即可得到点B的坐标;(2)由点A和点B的坐标可先求出AB的解析式,然后作GM⊥x轴于M,FN⊥x轴于N,求证△DMG≌△FND,从而得到GM=DN,DM=FN,又因为G、F在直线AB上,进而可求点G的坐标;(3)设点Q(a,-a+6),则点P的坐标为(a,-a+6),据此可求出PQ,作QH⊥x轴于H,可以把QH用a表示出来,在直角三角形中,根据勾股定理也可以用a把QH表示出来,从而求出a的值,进而求出点E的坐标.【详解】解:(1)对于直线y=-x+6,令x=0,得到y=6,可得A(0,6),令y=0,得到x=8,可得D(8,0),∴AC=AO=6,OD=8,AD==10,∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,在Rt△BCD中,∵BC2+CD2=BD2,∴x2+42=(8﹣x)2,∴x=3,∴B(3,0).(2)设直线AB的解析式为y=kx+6,∵B(3,0),∴3k+6=0,∴k=﹣2,∴直线AB的解析式为y=﹣2x+6,作GM⊥x轴于M,FN⊥x轴于N,∵△DFG是等腰直角三角形,∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,∴△DMG≌△FND(AAS),∴GM=DN,DM=FN,设GM=DN=m,DM=FN=n,∵G、F在直线AB上,∴,解得,∴G(2,2).(3)如图,设Q(a,﹣a+6),∵PQ∥x轴,且点P在直线y=﹣2x+6上,∴P(a,﹣a+6),∴PQ=a,作QH⊥x轴于H,∴DH=a﹣8,QH=a﹣6,∴=,由勾股定理可知:QH:DH:DQ=3:4:5,∴QH=DQ=PQ=a,∴a=a﹣6,∴a=16,∴Q(16,﹣6),P(6,﹣6),∵ED∥PQ,ED=PQ,D(8,0),∴E(﹣2,0).【点睛】一次函数解析式的综合运用是本题的考点,此题综合性比较强,用到了勾股定理、全等三角形的判定和性质等知识点,能作出辅助线并熟练运用所学知识是解题的关键.24、这个多边形的边数是1.【解析】试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.试题解析:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=2×360°+180°,解得n=1.故这个多边形的边数是1.25、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)【解析】分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论