湖北省丹江口市2024年八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
湖北省丹江口市2024年八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
湖北省丹江口市2024年八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
湖北省丹江口市2024年八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
湖北省丹江口市2024年八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省丹江口市2024年八年级数学第二学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.A.5个 B.4个 C.3个 D.2个2.要使分式有意义,则x应满足()A.x≠﹣1 B.x≠2 C.x≠±1 D.x≠﹣1且x≠23.下列多项式能分解因式的是()A. B. C. D.4.正方形ABCD中,点E、F分别在CD、BC边上,是等边三角形.以下结论:①;②;③;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2 C.3 D.45.要使关于的分式方程有整数解,且使关于的一次函数不经过第四象限,则满足条件的所有整数的和是()A.-11 B.-10 C.2 D.16.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()A.20 B.25 C.35 D.277.下列四个二次根式中,是最简二次根式的是()A. B. C. D.8.如果,那么等于A.3:2 B.2:5 C.5:3 D.3:59.下列运算错误的是()A. B.C. D.10.如图,中,增加下列选项中的一个条件,不一定能判定它是矩形的是()A. B. C. D.11.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,-1),表示点B的坐标为A.C(-1,0) B.12.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°二、填空题(每题4分,共24分)13.如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.14.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.15.一元二次方程x2﹣x=0的根是_____.16.一组数2、a、4、6、8的平均数是5,这组数的中位数是______.17.如图,正方形ABCD是出四个全等的角三角形围成的,若,,则EF的长为________。18.若不等式组恰有两个整数解,则m的取值范围是__________.三、解答题(共78分)19.(8分)若a=2+,b=2-,求的值.20.(8分)计算:÷21.(8分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.22.(10分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.23.(10分)(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则º;(2)小丽手中有一张矩形纸片,,.她准备按如下两种方式进行折叠:①如图2,点在这张矩形纸片的边上,将纸片折叠,使点落在边上的点处,折痕为,若,求的长;②如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点,分别落在,处,若,求的长.24.(10分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.25.(12分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.26.如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.(1)请求出旋转角的度数;(2)请判断与的位置关系,并说明理由;(3)若,,试求出四边形的对角线的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据中心对称的概念对各小题分析判断,然后利用排除法求解.【详解】(1)正方形绕中心旋转能与自身重合;(2)等边三角形不能绕某点旋转与自身重合;(3)矩形绕中心旋转能与自身重合;(4)直角不能绕某个点旋转能与自身重合;(5)平行四边形绕中心旋转能与自身重合;综上所述,绕某个点旋转能与自身重合的图形有(1)(3)(5)共3个.故选:.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转后两部分重合.2、D【解析】试题分析:当(x+1)(x-2)时分式有意义,所以x≠-1且x≠2,故选D.考点:分式有意义的条件.3、B【解析】

直接利用分解因式的基本方法分别分析得出答案.【详解】解:A、x2+y2,无法分解因式,故此选项错误;

B、x2y-xy2=xy(x-y),故此选项正确;

C、x2+xy+y2,无法分解因式,故此选项错误;

D、x2+4x-4,无法分解因式,故此选项错误;

故选:B.【点睛】本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a2-b2=(a+b)(a-b);②a2±2ab+b2=(a±b)2,第三步:再考虑用其它方法,如分组分解法等.4、C【解析】

由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【详解】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF=EF,∠EAF=∠AEF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE,∴BF=DE,∴BC−BF=CD−DE,∴CE=CF,故①正确;∵CE=CF,∠C=90°;∴EF=CE,∠CEF=45°;∴AF=CE,∴CF=AF,故③错误;∵∠AED=180°−∠CEF−∠AEF;∴∠AED=75°;故②正确;∵AE=AF,CE=CF;∴AC垂直平分EF;故④正确.故选:C.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定是解决本题的关键.5、C【解析】

依据关于一次函数不经过第四象限,求得a的取值范围;依据关于x的分式方程有整数解,即可得到整数a的取值,即可满足条件的所有整数a的和.【详解】关于一次函数不经过第四象限∴a+2>0∴a>-2分式方程有整数解∴为整数且∴a=-3,0,-4,2,-6又a>-2∴a=0,2∴满足条件的所有整数a的和为2故选C.【点睛】本题考查了一次函数的图象与系数的关系以及分式方程的解,注意根据题意求得a的值是关键.6、D【解析】

第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=个,进一步求得第(6)个图形中面积为1的正方形的个数即可.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。故选:D【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律7、D【解析】

根据最简二次根式的定义,可得答案.【详解】A.被开方数含能开得尽方的因数=3,故A不符合题意;B.被开方数含分母,故B不符合题意;C.被开方数含能开得尽方的因数=2,故C不符合题意;D.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D【点睛】此题考查最简二次根式,解题关键在于掌握运算法则8、B【解析】

根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)】解答并作出选择.【详解】∵=的两个内项是b、2,两外项是a、3,∴,∴根据合比定理,得,即;同理,得=2:5.故选B.【点睛】本题考查比例的性质,熟练掌握比例的基本性质是解题关键.9、A【解析】

根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意;故选:A.【点睛】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意.10、B【解析】

根据矩形的判定定理逐个判断即可.【详解】A、∵四边形ABCD是平行四边形,,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵,∴OA=OB,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.【点睛】本题考查了矩形的判定定理,能熟记矩形的判定定理的内容是解此题的关键,注意:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形.11、B【解析】

正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】建立平面直角坐标系,如图:则C(0表示正确的点的坐标是点D.故选B.【点睛】本题主要考查坐标确定位置,确定坐标原点和x,y轴的位置及方向,正确建立平面直角坐标系是解题关键.12、B【解析】

根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.二、填空题(每题4分,共24分)13、15【解析】

根据平行四边形与中位线的性质即可求解.【详解】∵四边形ABCD为平行四边形,的周长是30,∴△ADC的周长为30,∵点、分别是平行四边形的两边、的中点.∴DE=AD,DF=CD,EF=AC,∴则的周长=×30=15.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.14、【解析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB中,CE2=BE2+BC2,∴(4-x)2=x2+22,∴x=,CF=.S着色部分=S矩形ABCD-S△ECF=4×2-××2=15、x1=0,x2=1【解析】

方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.16、5【解析】

由平均数可求解a的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.17、【解析】

根据全等三角形的性质得到BH=AE=5,得到EH=BE-BH=7,根据勾股定理计算即可.【详解】,同理,HF=7,故答案为.【点睛】本题考查了全等三角形的性质和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.18、-1≤m<0【解析】分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.详解:∵不等式组的解集为又∵不等式组恰有两个整数解,∴解得:.恰有两个整数解,故答案为:点睛:考查一元一次不等式的整数解,解题的关键是写出不等式组的解集.三、解答题(共78分)19、.【解析】

先把要求的式子进行化简,先把分母有理化,再进行合并,然后把代入即可求出答案.【详解】解:===,把a=2+,b=2-代入上式得:原式==【点睛】此题考查了二次根式的化简求值,解题的关键根据二次根式的性质把要求的式子化到最简再代数,注意符号的变化.20、-1.【解析】

直接利用二次根式的混合运算法则分别化简得出答案.【详解】解:原式.【点睛】此题主要考查了二次根式的混合运算,熟悉运算法则是解题关键.21、探究三:16,6;结论:n²,n(n-1)2【解析】

探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,边长为1的正三角形共有1+3+5+7+⋅⋅⋅+(2n-1)=n2个;边长为2的正三角形共有1+2+3+⋅⋅⋅+(n-1)=应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有1+3+5+7=4边长为2的正三角形有1+2+3=(1+3)×32结论:连接边长为n的正三角形三条边的对应n等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第n层有(2n-1)个,共有1+3+5+7+⋅⋅⋅+(2n-1)=n边长为2的正三角形,共有1+2+3+⋅⋅⋅+(n-1)=n(n-1)2应用:边长为1的正三角形有252=625边长为2的正三角形有25×(25-1)2=300故答案为探究三:16,6;结论:n²,n(n-1)2;应用:625,【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.22、(1)证明见解析;(2)见解析.【解析】

(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【详解】(1)证明∵AC=9

AB=12

BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.【点睛】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.23、(1)12;(2)①AG=;②【解析】

(1)由折叠的性质可得∠BAE=∠CAE=12°;(2)①过点F作FH⊥AB于H,可证四边形DFHA是矩形,可得AD=FH=4,由勾股定理可求D1H=1,由勾股定理可求AG的长;②首先证明CK=CH,利用勾股定理求出BH,可得AH,再利用翻折不变性,可知AH=A1H,由此即可解决问题.【详解】解:(1)∵∠DAC=66°,∴∠CAB=24°∵将矩形ABCD折叠,使AB落在对角线AC上,∴∠BAE=∠CAE=12°故答案为:12;(2)如图2,过点F作FH⊥AB于H,∵∠D=∠A=90°,FH⊥AB∴四边形DFHA是矩形∴AD=FH=4,∵将纸片ABCD折叠∴DF=D1F=5,DG=D1G,∴D1H=,∴AD1=2∵AG2+D1A2=D1G2,∴AG2+4=(4−AG)2,∴AG=;②∵DK=,CD=9,∴CK=9−=,∵四边形ABCD是矩形,∴DC∥AB,∴∠CKH=∠AHK,由翻折不变性可知,∠AHK=∠CHK,∴∠CKH=∠CHK,∴CK=CH=,∵CB=AD=4,∠B=90°,∴在Rt△CDF中,BH=,∴AH=AB−BH=,由翻折不变性可知,AH=A1H=,∴A1C=CH−A1H=1.【点睛】本题考查四边形综合题、矩形的性质、翻折变换、勾股定理,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题,属于中考压轴题.24、(1)见解析;(2);(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;

(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论