四川省遂宁第二中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
四川省遂宁第二中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
四川省遂宁第二中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
四川省遂宁第二中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
四川省遂宁第二中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省遂宁第二中学2024届八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.2.我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.53.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-104.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对()A.平均数、众数 B.平均数、极差C.中位数、方差 D.中位数、众数5.在□ABCD中,∠A:∠B=7:2,则∠C等于()A.40° B.80° C.120° D.140°6.在某人才招聘会上,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,根据这个要求,听、说、读、写”四项技能测试比较合适的权重设计是A. B. C. D.7.下列式子中属于最简二次根式的是()A. B. C. D.8.五箱梨的质量(单位:千克)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分是()A.20和18 B.20和19 C.18和18 D.19和189.如图,把矩形ABCD沿对角线BD折叠,重叠部分为△EBD,则下列说法可能错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE=30°10.要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位11.在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB12.一次考试考生约2万名,从中抽取500名考生的成绩进行分析,这个问题的样本是()A.500 B.500名 C.500名考生 D.500名考生的成绩二、填空题(每题4分,共24分)13.若二次根式有意义,则x的取值范围是________.14.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.15.小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.16.一个正方形的面积为4,则其对角线的长为________.17.如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.18.如图,平分,,,则______.三、解答题(共78分)19.(8分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.20.(8分)(1)如图①,点M是正方形ABCD的边BC上一点,点N是CD延长线上一点,且BM=DN,则线段AM与AN的关系.(2)如图②,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,判断BE,DF,EF三条线段的数量关系,并说明理由.(3)如图③,在四边形ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边BC、CD上,且∠EAF=45°,若BD=5,EF=3,求四边形BEFD的周长.21.(8分)如图1,直线y=kx﹣2k(k<0),与y轴交于点A,与x轴交于点B,AB=2.(1)直接写出点A,点B的坐标;(2)如图2,以AB为边,在第一象限内画出正方形ABCD,求直线DC的解析式;(3)如图3,(2)中正方形ABCD的对角线AC、BD即交于点G,函数y=mx和y=(x≠0)的图象均经过点G,请利用这两个函数的图象,当mx>时,直接写出x的取值范围.22.(10分)先化简,再求值:.其中a=3+.23.(10分)如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.(1)△P′PB是三角形,△PP′A是三角形,∠BPC=°;(2)利用△BPC可以求出△ABC的边长为.如图丙,在正方形ABCD内有一点P,且PA=,BP=,PC=1;(3)求∠BPC度数的大小;(4)求正方形ABCD的边长.24.(10分)如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.25.(12分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.26.王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,

,求证:平行四边形ABCD是

.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.【详解】根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故选B【点睛】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.2、A【解析】

根据众数、中位数的定义和加权平均数公式分别进行解答即可.【详解】解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;

把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;

这组数据的平均数是:(47×2+48×3+50)÷6=48,

故选:A.【点睛】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).3、C【解析】

绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.4、D【解析】试题分析:∵有一半的学生考79分以上,一半的学生考不到79分,∴79分是这组数据的中位数,∵大部分的学生都考在80分到85分之间,∴众数在此范围内.故选D.考点:统计量的选择.5、A【解析】

根据平行四边形的性质得到AD∥BC,AB∥CD,由平行线的性质得到∠A,再由平行线的性质得到∠C=40°.【详解】根据题意作图如下:因为BCD是平行四边形,所以AD∥BC,AB∥CD;因为AD∥BC,所以∠A是∠B的同的同旁内角,即∠A+∠B=180°;又因为∠A:∠B=7:2,所以可得∠A==140°;又因为AB∥CD,所以∠C是∠A的同旁内角,所以∠C=180°-140°=40°.故选择A.【点睛】本题考查平行四边形的性质和平行线的性质,解题的关键是掌握平行四边形的性质和平行线的性质.6、A【解析】

数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.依次即可求解.【详解】解:人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,听、说、读、写”四项技能测试比较合适的权重设计是.故选:.【点睛】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.7、C【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8、D【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:从小到大排列此数据为:1、1、19、20、21,数据1出现了三次最多,所以1为众数;19处在第3位是中位数.∴本题这组数据的中位数是19,众数是1.故选:D.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9、D【解析】

根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【详解】∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A.B选项正确;在△AEB和△CED中,∠BAE=∠DCE∠AEB=∠CEDAB=CD∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点睛】此题考查翻折变换(折叠问题),解题关键在于利用全等三角形的性质进行解答.10、C【解析】

平移后相当于x不变y增加了5个单位,由此可得出答案.【详解】解:由题意得x值不变y增加5个单位

应沿y轴向上平移5个单位.

故选C.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.11、C【解析】

根据平行四边形的判定方法逐一进行分析判断即可.【详解】A.AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;B.AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;C.AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;D.OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.12、D【解析】

样本是指从总体中抽取的部分个体,据此即可判断【详解】由题可知,所考查的对象为考生的成绩,所以从总体中抽取的部分个体为500名考生的成绩.故答案为:D【点睛】本题考查了样本的概念,明确题中考查的对象是解题的关键.二、填空题(每题4分,共24分)13、【解析】

根据二次根式有意义的条件可得-x≥0,再解不等式即可.解答【详解】由题意得:-x⩾0,解得:,故答案为:.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.14、2.5【解析】

∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD-AE=4-x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,即CE的长为2.5,故答案为2.5.15、20【解析】

根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.【详解】解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,

所以A、B两地距离为:4×5=20(千米).

故答案为:20【点睛】本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.16、【解析】

已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.【详解】如图,∵正方形ABCD面积为4,∴正方形ABCD的边长AB==2,根据勾股定理计算BD=.故答案为:.【点睛】本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.17、18【解析】

利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24,求得CD=9,即可求得BC的长.【详解】∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∵E为AC中点,∴CE=AC==7.5,DE=AB==7.5,∵CD+DE+CE=24,∴CD=24-7.5-7.5=9,∴BC=18,故答案为18.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.18、50【解析】

由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.【详解】解:∵,∴∠ADE=180°-80°=100°,∵平分,∴∠BDE=∠ADE=50°,∵,∴∠ABD=∠BDE=50°.故答案为:50.【点睛】本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.三、解答题(共78分)19、(1)见解析;(1)①见解析,②1【解析】

(1)直接利用直角三角形斜边的中线等于斜边的一半,即可得出结论;(1)①延长CM交OB于T,先判断出△CDM≌△TBM得出CM=TM,DC=BT=OC,进而判断出△OAC≌△BAT,得出AC=AT,即可得出结论;②先利用等腰直角三角形的性质求出再求出OD,DC=CO=,再用勾股定理得出CT,进而判断出CM=AM,得出AM=OM,进而求出ON,再根据勾股定理求出MN,即可得出结论.【详解】解:(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,∴AM=BD,∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM=BD,∴AM=CM;(1)①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB==AB=4,在图①中,点D是OA的中点,∴OD=OA=1,∵△OCD是等腰直角三角形,∴DC=CO=ODsin45°==,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3,在Rt△OTC中,CT==1,∵CM=TM=CT==AM,∵OM是Rt△COT的斜边上的中线,∴OM=CT=,∴AM=OM,过点M作MN⊥OA于N,则ON=AN=OA=1,根据勾股定理得,MN==1,∴S△AOM=OA•MN=×4×1=1.【点睛】此题是几何变换综合题,主要考查了旋转的性质,直角三角形的性质,全等三角形的判定和性质,勾股定理及三角函数的应用,构造出全等三角形是解本题的关键.20、(1)结论:AM=AN,AM⊥AN.理由见解析;(2)BE+DF=EF;(3)四边形BEFD的周长为1.【解析】

(1)利用正方形条件证明△ABM≌△ADN,即可推出结论,(2)过点A作AG⊥AE交CD延长线于点G,证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题,(3)过点A作AG⊥AE交CD延长线于点G.证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题.【详解】(1)结论:AM=AN,AM⊥AN.理由:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADN=∠BAD=90°,∵BM=DN,∴△ABM≌△ADN,∴AM=AN,∠BAM=∠DAN,∴∠AMN=∠BAD=90°,∴AM⊥AN,(2)如图②中,过点A作AG⊥AE交CD延长线于点G.∵四边形ABCD为正方形,∴AB=AD,∠B=∠BAD=∠ADC=90°.∴∠B=∠ADG=90°,∠BAE+∠EAD=90°.∵AG⊥AE,∴∠DAG+∠EAD=90°.∴∠BAE=∠DAG.在△ABE和△ADG中,,∴△ABE≌△ADG.∴AE=AG,BE=DG.∵∠EAF=45°,AG⊥AE,∴∠EAF=∠GAF=45°.在△FAE和△FAG中,,∴△AEF≌△AGF.∴EF=FG.∵FG=DF+DG=DF+BE,∴BE+DF=EF.(3)如图③中,过点A作AG⊥AE交CD延长线于点G.∵AB=AD,∠ABC+∠ADC=180°,∠ADG+∠ADC=180°∴∠ABE=∠ADG,∵AG⊥AE,∴∠DAG+∠EAD=90°.∵∠BAE+∠EAD=90°∴∠BAE=∠DAG.在△ABE和△ADG中,,∴△ABE≌△ADG.∴AE=AG,BE=DG.∵∠EAF=45°,AG⊥AE,∴∠EAF=∠GAF=45°.在△FAE和△FAG中,,∴△AEF≌△AGF.∴EF=FG.∵FG=DF+DG=DF+BE,∴BE+DF=EF.∴四边形BEFD的周长为EF+(BE+DF)+DB=3+3+5=1.【点睛】本题考查了三角形全等的判定,正方形的性质,中等难度,作辅助线是解题关键.21、(1)A(0,4),B(2,0);(2)y=﹣2x+2;(1)﹣1<x<0或x>1.【解析】

(1)根据直线的解析式与y轴交于点A,与x轴交于点B,分别把点A和点B用含有k的代数式表示出来,再根据AB=2求出k即可得A、B的坐标;(2)作CH⊥x轴于H,根据正方形的性质和全等三角形的判定先求证△AOB≌△BHC,从而得到CH=2,BH=4,进而得到点C的坐标,再根据平行线的性质求出直线CD的解析式即可;(1)先求出在第一象限内交点的坐标,根据函数的性质和图象观察即可得.【详解】解:(1)∵直线y=kx﹣2k(k<0),与y轴交于点A,与x轴交于点B,∴A(0,﹣2k),B(2,0),∵AB=2,∴4+4k2=20,∴k2=4,∵k<0,∴k=﹣2,∴A(0,4),B(2,0).(2)如图2中,作CH⊥x轴于H.∵四边形ABCD是正方形,∴AB=BC,∠AOB=∠ABC=∠BHC=90°,∴∠ABO+∠CBH=90°,∠CBH+∠BCH=90°,∴∠ABO=∠BCH,∴△AOB≌△BHC,∴CH=OB=2,BH=OA=4,∴C(6,2),∵CD∥AB,∴可以假设直线CD的解析式为y=﹣2x+b,把C(6,2)代入得到b=2,∴直线CD的解析式为y=﹣2x+2.(1)由A、C坐标,可知在第一象限内交点错标为(1,1)观察图象可知直线y=mx与y=的交点坐标为(1,1)或(﹣1,﹣1),∴mx>时,x的取值范围为﹣1<x<0或x>1.【点睛】函数解析式的综合运用是本题的考点,熟练掌握函数图象的性质和全等三角形的判定是解题的关键.22、a﹣3,【解析】

根据题意对原式利用乘法分配律计算得到最简结果,把a的值代入计算即可求出值.【详解】解:=﹣•=2(a﹣1)﹣(a+1)=2a﹣2﹣a﹣1=a﹣3,当a=3+时,原式=3+﹣3=.【点睛】本题考查分式的化简求值,熟练掌握分式混合运算法则是解答本题的关键.23、(1)等边直角150°;(2);(3)135°;(4).【解析】

(1)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,(2)过点B作BM⊥AP′,交AP′的延长线于点M,进而求出等边△ABC的边长为,问题得到解决.(3)求出,根据勾股定理的逆定理求出∠AP′P=90°,推出∠BPC=∠AEB=90°+45°=135°;(4)过点B作BF⊥AE,交AE的延长线于点F,求出FE=BF=1,AF=2,关键勾股定理即可求出AB.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP′,∴∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;(2)过点B作BM⊥AP′,交AP′的延长线于点M,∴由勾股定理得:∴由勾股定理得:故答案为(1)等边;直角;150;;(3)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴,由勾股定理得:EP=2,∵∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;(4)过点B作BF⊥AE,交AE的延长线于点F;∴∠FEB=45°,∴FE=BF=1,∴AF=2;∴在Rt△ABF中,由勾股定理,得AB=;∴∠BPC=135°,正方形边长为.答:(3)∠BPC的度数是135°;(4)正方形ABCD的边长是.【点睛】本题主要考查对勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,含30度角的直角三角形的性质,正方形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解此题的关键.24、(1)y=x+1;(2);(2)(2,4)或(﹣2,2)或【解析】

(1)利用待定系数法即可解决问题;

(2)求出点C坐标,利用待定系数法求出直线DE的解析式即可解决问题;

(2)求出点E坐标,分两种情形分别讨论求解即可;【详解】(1)∵A(﹣2,0),OA=2OB,∴OA=2,OB=1,∴B(0,1),设直线AB的解析式为y=kx+b,则有解得∴直线AB的解析式为y=x+1.(2)∵BC=AB,A(﹣2,0),B(0,1),∴C(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论