




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省茂名市2024年八年级数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在中,,是对角线上不同的两点,下列条件中,不能得出四边形一定为平行四边形的是()A. B. C. D.2.若一组数据1,4,7,x,5的平均数为4,则x的值时()A.7 B.5 C.4 D.33.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.4.运用分式基本性质,等式中缺少的分子为()A.a B.2a C.3a D.4a5.用反证法证明命题:“四边形中至少有一个角是钝角或直角”时,首先应该假设这个四边形中()A.有一个角是钝角或直角 B.每一个角都是钝角C.每一个角都是直角 D.每一个角都是锐角6.同一平面直角坐标系中,一次函数与(为常数)的图象可能是A. B.C. D.7.如图,在□ABCD中,对角线AC、BD交于点O,下列式子一定成立的是()A.AC⊥BD B.AO=OD C.AC=BD D.OA=OC8.要使代数式有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≤29.若点P的坐标为(3,4),则点P关于x轴对称点的点P′的坐标为()A.(4,-3) B.(3,-4) C.(-4,3) D.(-3,4)10.如图,□ABCD中,∠C=100°,BE平分∠ABC,则∠AEB的度数为()A.60° B.50° C.40° D.30°11.已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为A.6、7 B.7、8 C.6、7、8 D.6、8、912.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是(
)A. B. C. D.二、填空题(每题4分,共24分)13.将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.14.汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为_____.15.如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.16.如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.17.在平面直角坐标系中,点P(1,-3)关于原点O对称的点的坐标是________.18.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=_____.三、解答题(共78分)19.(8分)计算:(1)(2)-20.(8分)如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.21.(8分)在平行四边形中,的垂直平分线分别交于两点,交于点,试判断四边形的形状,并说明理由.22.(10分)计算:(2﹣)×÷5.23.(10分)近年来,越来越多的人们加入到全民健身的热潮中来.“健步走”作为一项行走速度和运动量介于散步和竞走之间的步行运动,因其不易发生运动伤害,不受年龄、时间和场地限制的优点而受到人们的喜爱.随着信息技术的发展,很多手机可以记录人们每天健步走的步数,为大家的健身做好记录.小明的爸爸妈妈都是健步走爱好者,一般情况下,他们每天都会坚持健步走.小明为了给爸爸妈妈颁发4月份的“运动达人”奖章,进行了抽样调查,过程如下,请补充完整.从4月份随机抽取10天,记录爸爸妈妈运动步数(千步)如下:爸爸12101115141314111412妈妈1114152111114151414根据以上信息,整理分析数据如下表所示:平均数中位数众数爸爸12.612.5妈妈1414(1)直接在下面空白处写出表格中,的值;(2)你认为小明会把4月份的“运动达人”奖章颁发给谁,并说明理由.24.(10分)如图,直线分别交x轴、y轴于A、B两点,直线BC与x轴交于点,P是线段AB上的一个动点点P与A、B不重合.(1)求直线BC所对应的的函数表达式;(2)设动点P的横坐标为t,的面积为S.①求出S与t的函数关系式,并写出自变量t的取值范围;②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.25.(12分)直线过点,直线过点,求不等式的解集.26.用无刻度的直尺绘图.(1)如图1,在中,AC为对角线,AC=BC,AE是△ABC的中线.画出△ABC的高CH(2)如图2,在直角梯形中,,AC为对角线,AC=BC,画出△ABC的高CH.
参考答案一、选择题(每题4分,共48分)1、D【解析】
数形结合,依题意画出图形,可通过选项所给条件证三角形全等,再根据平行四边形的判定定理判断即可.【详解】解:如图所示,A.四边形ABCD是平行四边形又(SAS)四边形BEDF是平行四边形,故A选项正确.B.四边形ABCD是平行四边形又(ASA)四边形BEDF是平行四边形,故B选项正确.C.四边形ABCD是平行四边形(AAS),四边形BEDF是平行四边形,故C选项正确.D.四边形ABCD是平行四边形,,再加上并不能证明三角形全等,也不能通过平行四边形的判定定理直接证明,故D选项错误.故答案为:D【点睛】本题考查了平行四边形的性质与判定,灵活运用选项所给条件,结合平行四边形的性质证三角形全等是解题的关键.2、D【解析】
运用平均数的计算公式即可求得x的值.【详解】解:依题意有:1+4+7+x+5=4×5,解得x=1.故选:D.【点睛】本题考查的是样本平均数的求法及运用,关键是熟练掌握平均数公式.3、D【解析】
利用相似三角形的面积比等于相似比的平方解答.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:D.【点睛】本题考查了相似三角形的面积比等于相似比的平方这一知识点,熟知这条知识点是解题的关键.4、D【解析】
根据分式的基本性质即可求出答案.【详解】解:,故选择:D.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.5、D【解析】
假设与结论相反,可假设“四边形中没有一个角是直角或钝角”.【详解】假设与结论相反;可假设“四边形中没有一个角是直角或钝角”;与之同义的有“四边形中每一个角都是锐角”;故选:D【点睛】本题考查了反证法,解题的关键在于假设与结论相反.6、B【解析】
根据一次函数的图像即可求解判断.【详解】由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,故y=nx+m也过一,二,三象限,故A,C错误;由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,故y=nx+m过一,二,四象限,故B正确,D错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.7、D【解析】试题解析:A、菱形的对角线才相互垂直.故不对.B、平行四边形中,AO不一定等于OD,故不对.C、只有平行四边形为矩形时,其对角线相等,故也不对.D、平行四边形对角线互相平分.故该选项正确.故选D.8、B【解析】
二次根式的被开方数x-2是非负数.【详解】解:根据题意,得
x-2≥0,
解得,x≥2;
故选:B.【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9、B【解析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴P′的坐标为(3,−4).故选:B.【点睛】本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.10、C【解析】
由平行四边形的性质得出AD∥BC,AB∥CD,由平行线的性质得出∠AEB=∠CBE,∠ABC=80°,由角平分线定义求出∠CBE=40°,即可得出答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠ABC+∠C=180°,∴∠ABC=180°-∠C=180°-100°=80°,∵BE平分∠ABC,∴∠CBE=∠ABC=40°,∴∠AEB=40°;故选:C.【点睛】本题考查了平行四边形的性质、平行线的性质等知识;熟练掌握平行四边形的性质是解题的关键.11、C【解析】分析:应用特殊元素法求解:当t=0时,ABCD的四个项点是A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,ABCD的四个项点是A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=2时,ABCD的四个项点是A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;故选项A,选项B,选项D错误,选项C正确。故选C。12、C【解析】
数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即.故选C.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.二、填空题(每题4分,共24分)13、1.【解析】分析:连接O1A,O1B,先证明△AO1C≌△BO1D,从而可得S四边形ACO1D=S△AO1B=S正方形ABEF=,然后可求阴影部分面积之和.详解:如图,连接O1A,O1B.∵四边形ABEF是正方形,∴O1A=O1B,∠AO1B=90°.∵∠AO1C+∠AO1D=90°,∠BO1D+∠AO1D=90°,∴∠AO1C=∠BO1D.在△AO1C和△BO1D中,∵∠AO1C=∠BO1D,O1A=O1B,∠O1AC=∠O1BD=45°,∴△AO1C≌△BO1D,∴S四边形ACO1D=S△AO1B=S正方形ABEF=,∴阴影部分面积之和等于×4=1.故答案为:1.点睛:本题考查了正方形的性质,全等三角形的判定与性质,证明△AO1C≌△BO1D是解答本题的关键.14、y=40-5x【解析】
直接利用汽车耗油量结合油箱的容积,进而得出油箱内剩余油量y(L)与行驶时间x(h)的关系式.【详解】由题意可得:y=40-5x.故答案为y=40-5x.【点睛】此题主要考查了函数关系式,根据汽车耗油量得出函数关系式是解题关键.15、【解析】
作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.【详解】作HE⊥BD交BD于点E,∵四边形ABCD是正方形,∴∠BAD=90°,∠ADB=45°,∴△DEH是等腰直角三角形,∴HE=DE,∵HE2+DE2=DH2,∴HE=,∵∠ABH=∠DBH,∠BAD=90°,∠BEH=90°,∴HE=AH=,∴.AD=.故答案为.【点睛】本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.16、(﹣1,﹣2).【解析】
1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.【详解】由题意及点A的坐标可确定如图所示的直角坐标系,则B点和A点关于原点对称,所以点B的坐标是(-1,-2).【点睛】本题考查了建立直角坐标系,牢牢掌握该法是解答本题的关键.17、(﹣1,3)【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),然后直接作答即可.【详解】根据中心对称的性质,可知:点P(1,−3)关于原点O中心对称的点P`的坐标为(−1,3).故答案为:(﹣1,3).【点睛】此题考查关于原点对称的点的坐标,解题关键在于掌握其性质.18、.【解析】
如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题.【详解】如图,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16.故答案为:16.【点睛】本题考查了平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(共78分)19、(1);(2)【解析】分析:(1)按照“二次根式加减法法则”进行计算即可;(2)根据“二次根式相关运算的运算法则”结合“平方差公式和完全平方公式”进行计算即可.详解:(1)原式===;(2)原式===.点睛:熟记“二次根式的相关运算法则和平方差公式及完全平方公式”是解答本题的关键.20、(1);(1)(0<x<11);(3)能,【解析】
(1)当△BEF是等边三角形时,求得∠ABE=30°,则可解Rt△ABE,求得BF即BE的长.(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,继而结合(1)得到的y与x的关系式建立方程即可求得AE的值.【详解】(1)当△BEF是等边三角形时,∠EBF=90°,∵四边形ABCD是正方形,∴∠ABC=∠A=90°,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,∴BE=1AE,设AE=x,则BE=1x,在Rt△ABE中,AB1+AE1=BE1,即111+x1=(1x)1,解得x=∴AE=,BE=,∴BF=BE=.(1)作EG⊥BF,垂足为点G,根据题意,得EG=AB=11,FG=y-x,EF=y,0<AE<11,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.∴y1=(y-x)1+111,∴所求的函数解析式为(0<x<11).(3)∵AD∥BC∴∠AEB=∠FBE∵折叠∴∠AEB=∠FEB,∴∠AEB=∠FBE=∠FEB,∴点A′落在EF上,∴A'E=AE,∠BA'F=∠BA'E=∠A=90,∴要使△A'BF成为等腰三角形,必须使A'B=A'F.而A'B=AB=11,A'F=EF-A'E=BF-A'E,∴y-x=11.∴-x=11.整理得x1+14x-144=0,解得,经检验:都原方程的根,但不符合题意,舍去,当AE=时,△A'BF为等腰三角形.【点睛】本题考查了正方形综合题,涉及了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理,解一元二次方程,函数等知识,综合性较强,准确识图,熟练掌握和灵活运用相关知识是解题的关键.21、四边形是菱形,理由见解析。【解析】
根据题意先证明四边形是平行四边形,再根据垂直平分线的性质即可求解.【详解】解:四边形是菱形,理由如下:四边形是平行四边形又垂直平分在和中四边形是平行四边形又四边形是菱形【点睛】此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.22、-【解析】
先化简二次根式,然后利用乘法的分配率进行计算,最后化成最简二次根式即可.【详解】原式=(4-)×÷5=(3-)÷5=-【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式运算的法则和运算律.23、(1);(2)详见解析.【解析】
(1)根据平均数、众数的定义分别求出a,b的值;(2)根据平均数与中位数的意义说明即可.【详解】解:(1)由题意,可得a=(11+14+15+2+11+11+14+15+14+14)÷10=12.1,10个数据中,14出现了3次,次数最多,所以b=14;∴;(2)答案不唯一,理由须支撑推断结论.例如:我认为小明会把4月份的“运动达人”奖章颁发给爸爸,因为从平均数的角度看,爸爸每天的平均运动步数比妈妈多.我认为小明会把4月份的“运动达人”奖章颁发给妈妈,因为从中位数的角度看,妈妈有超过5天的运动步数达到或超过了14千步,而爸爸没有,妈妈平均步数低于爸爸完全是受一个极端值的影响造成的,考虑到这一极端值很可能是由于某种特殊原因(例如生病等)造成的,可以排除此干扰.【点睛】本题考查了中位数、众数和平均数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫伯这组数据的中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.24、(1)y=2x+1;(2)①S=-2t+2(0<t<1);②点Q的坐标为(,).【解析】
(1)根据函数表达式求出点B坐标,结合点C坐标求出BC的表达式;(2)①根据三角形面积求法可得S与t的表达式;②过点P作PQ∥x轴,交BC于点Q,得出P和Q的坐标,利用平行四边形的性质建立方程求解即可.【详解】解:(1)直线y=-x+1与x轴、y轴交点坐标分别为A(1,0)、B(0,1)两点.设直线BC所对应的函数关系式为y=kx+1.∵直线BC经过点C(-2,0),∴-2k+1=0,解得:k=2,∴直线BC所对应的函数关系式为y=2x+1.(2)①由题意,设点P的坐标为(t,-t+1),∴S=S△POA=×OA×yP=×1×(-t+1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晕血急救的护理措施
- 有创血压监测流程及护理
- 2025年Z世代消费偏好研究新消费品牌市场细分领域增长动力分析报告
- 人工智能赋能下的医疗器械诊断设备2025年技术创新与产业布局深度报告
- 工业互联网平台与AR交互技术在产品展示与营销中的应用报告
- 常用机床电气检修(第二版)课件:Z3040 型摇臂钻床电气检修
- 产业经济学(第3版)课件-经济全球化与产业组织变化
- 镇静催眠药中毒的急救护理
- 烟雾病术后患者的护理
- 膝关节的健康教育
- 【2023《上汽集团公司营运能力现状及问题探析》8300字(论文)】
- 我是小小讲解员博物馆演讲稿
- 粮安工程粮库智能化升级改造 投标方案(技术标)
- 吉塔行星模拟课程
- 《反本能 如何对抗你的习以为常》读书笔记思维导图PPT模板下载
- 西南交11春学期《模拟电子技术A》离线作业
- 施工单位平安工地考核评价表(标准)
- JJF 1855-2020纯度标准物质定值计量技术规范有机物纯度标准物质
- GB/T 35194-2017土方机械非公路机械传动宽体自卸车技术条件
- GB 6245-2006消防泵
- SMT通用作业指导书
评论
0/150
提交评论