版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省自贡市富顺三中学、代寺区数学八年级下册期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列数学符号中,属于中心对称图形的是()A. B. C. D.2.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm3.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个 B.2个 C.3个 D.4个4.下列事件是必然事件的是()A.乘坐公共汽车恰好有空座 B.同位角相等C.打开手机就有未接电话 D.三角形内角和等于180°5.估计(+3)×的运算结果应在()之间.A.2和3 B.3和4 C.4和5 D.5和66.在平面直角坐标系中,若点的坐标为,则点在()A.第一象限. B.第二象限. C.第三象限 D.第四象限7.如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数有()A.2个 B.4个 C.3个 D.5个8.二次根式中,字母a的取值范围是()A.a<﹣ B.a>﹣ C.a D.a9.已知四边形是平行四边形,下列结论中正确的个数有()①当时,它是菱形;②当时,它是菱形;③当时,它是矩形;④当时,它是正方形.A.4 B.3 C.2 D.110.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.11.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A. B.4 C. D.212.下列因式分解正确的是()A.2x2﹣6x=2x(x﹣6)B.﹣a3+ab=﹣a(a2﹣b)C.﹣x2﹣y2=﹣(x+y)(x﹣y)D.m2﹣9n2=(m+9n)(m﹣9n)二、填空题(每题4分,共24分)13.已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.14.如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.15.已知是整数,则正整数n的最小值为___16.计算:__________.17.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.18.如果等腰直角三角形的一条腰长为1,则它底边的长=________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求△ABC的周长.20.(8分)计算:(1)-|5-|+;(2)-(2+)221.(8分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11ab20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批、两种空气净化装置,每台种设备价格比每台种设备价格多0.7万元,花3万元购买种设备和花7.2万元购买种设备的数量相同.(1)求种、种设备每台各多少万元?(2)根据销售情况,需购进、两种设备共20台,总费用不高于15万元,求种设备至少要购买多少台?(3)若每台种设备售价0.6万元,每台种设备售价1.4万元,在(2)的情况下商场应如何进货才能使这批空气净化装置售完后获利最多?23.(10分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.24.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)在(1)的条件下,小明选择哪家快递公司更省钱?25.(12分)季末打折促销,甲乙两商场促销方式不同,两商场实际付费y(元)与标价x(元)之间的函数关系如图所示折线O-A-C(虚线)表示甲商场,折线O-B-C表示乙商场(1)分别求射线AC,BC的解析式.(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是______.(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是______.26.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【解析】
根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm).∵AD=BD,∴BD+CD=12cm.故选C.3、C【解析】①已知∠A=∠B+∠C,由∠A+∠B+∠C=180°,得2∠A=180°,所以∠A=90°,它是直角三角形;②三个内角之比为3∶4∶1.则这三个内角分别为41°,60°,71°,它是锐角三角形;③④可由勾股定理的逆定理判定是直角三角形.因此①③④是直角三角形,故选C.4、D【解析】A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件,故选D.5、C【解析】
先对原式进行计算,然后对结果中的进行估算,则最后的结果即可估算出来.【详解】原式,∵,∴,即,则原式的运算结果应在4和5之间,故选:C.【点睛】本题主要考查二次根式的混合运算及无理数的估算,掌握无理数的估算方法是解题的关键.6、D【解析】
根据点的坐标为的横纵坐标的符号,可得所在象限.【详解】∵2>0,-2<0,∴点在位于平面直角坐标系中的第四象限.故选D.【点睛】本题考查了平面直角坐标系中各象限内点的坐标的符号特征.四个象限内点的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【解析】
根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.【详解】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°.由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2.故②错误;∵∠AOB=90°,∴AG=FG>OG.∵△AGD与△OGD同高,∴S△AGD>S△OGD.故③错误;∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE.∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF.∵AE=EF,∴AE=GF.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确;∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF是等腰直角三角形.∵S△OGF=1,∴OG=1,解得OG=,∴BE=2OG=2,GF=,∴AE=GF=2,∴AB=BE+AE=2+2,∴S四边形ABCD=AB=(2+2)=12+8.故⑥错误.∴其中正确结论的序号是①④⑤,共3个.故选C.【点睛】此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理8、B【解析】
根据二次根式以及分式有意义的条件即可解答.【详解】根据题意知2a+1>0,解得:a>﹣,故选B.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式与分式有意义的条件,本题属于基础题型.9、B【解析】
根据特殊平行四边形的判定即可判定.【详解】四边形是平行四边形,①当时,邻边相等,故为菱形,正确;②当时,对角线垂直,是菱形,正确;③当时,有一个角为直径,故为矩形,正确;④当时,对角线相等,故为矩形,故错误,由此选B.【点睛】此题主要考查特殊平行四边形的判定,解题的关键是熟知特殊平行四边形的判定定理.10、A【解析】
首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.11、A【解析】
试题分析:∵菱形ABCD的周长为16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD为等边三角形,∴EB=在Rt△ABE中,AE=故可得AC=2AE=.故选A.考点:菱形的性质.12、B【解析】
分别利用提公因式法和平方差公式进行分析即可.【详解】A.2x2﹣6x=2x(x﹣3),故错误;B.﹣a3+ab=﹣a(a2﹣b);故正确;C.﹣x2﹣y2≠﹣(x+y)(x﹣y),不能用平方差公式,故错误;D.m2﹣9n2=(m+3n)(m﹣3n),故错误.【点睛】利用提公因式法和平方差公式进行因式分解是解题关键.二、填空题(每题4分,共24分)13、1【解析】
根据三角形的中位线定理解答即可.【详解】∵三角形的三条中位线的长分别是5cm、6cm、10cm,∴三角形的三条边分别是10cm、12cm、20cm.∴这个三角形的周长=10+12+20=1cm.故答案是:1.【点睛】本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.14、1【解析】
解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.【详解】解:解二元一次方程方程组解得或则A点坐标为(-2,2),B点坐标为(2,-2)C点坐标为(0,2),D点坐标为(2,-2)所以AC∥BD,AC=BD=2所以四边形ADBC是平行四边形则==2××2×4=1,故答案为1.【点睛】本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.15、1【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.16、8【解析】
利用平方差公式即可解答.【详解】解:原式=11-3=8.【点睛】本题考查平方差公式,熟悉掌握是解题关键.17、1【解析】试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3,∴AE==1,∵DE∥BC,∴AE=BE=1,∴当点D落在BC上时,平移的距离为BE=1.考点:平移的性质18、【解析】
根据等腰直角三角形两腰相等及勾股定理求解即可.【详解】解:∵等腰直角三角形的一腰长为1,则另一腰长也为1∴由勾股定理知,底边的长为故答案为:.【点睛】本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.三、解答题(共78分)19、(1)30°;(2)1.【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D.根据线段垂直平分线的性质,可得AD=BD,可得∠ABD的度数,即可求得∠DBC的度数.(2)由△CBD的周长为20,可得AC+BC=20,根据AB=2AE=12,即可得出答案.【详解】解:(1)解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°.(2)∵MN垂直平分AB,∴DA=DB,AB=2AE=12,∵BC+BD+DC=20,∴AD+DC+BC=20,∴AC+BC=20,∴△ABC的周长为:AB+AC+BC=12+20=1.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键..20、(1)13+4;(2)-1.【解析】
(1)先把二次根式化简,然后去绝对值后合并即可;
(2)利用分母有理化和完全平方公式计算.【详解】解:(1)原式=3-(5-)+18
=3-5++18
=13+4;
(2)原式=4-(4+4+3)
=4-1-4
=-1.故答案为:(1)13+4;(2)-1.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】
由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.22、(1)种设备每台0.5万元,种设备每台l.2万元;(2)种设备至少购买13台;(3)当购买种设备13台,种设备7台时,获利最多.【解析】
(1)设种设备每台万元,则种设备每台万元,根据“3万元购买种设备和花7.2万元购买种设备的数量相同”列分式方程即可求解;(2)设购买种设备台,则购买种设备台,根据总费用不高于15万元,列不等式求解即可;【详解】(1)设种设备每台万元,则种设备每台万元,根据题意得:,解得,经检验,是原方程的解,∴.则种设备每台0.5万元,种设备每台l.2万元;(2)设购买种设备台,则购买种设备台,根据题意得:,解得:,∵为整数,∴种设备至少购买13台;(3)每台种设备获利(万元),每台种设备获利(万元),∵,∴购进种设备越多,获利越多,∴当购买种设备13台,种设备(台)时,获利最多.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.23、树高为15m.【解析】
设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.【详解】解:设树高BC为xm,则CD=x-10,则题意可知BD+AB=10+20=30,∴AC=30-CD=30-(x-10)=40-x,∵△ABC为直角三角形,∴AC2=AB2+BC2,即(40-x)2=202+x2,解得x=15,即树高为15m,【点睛】本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.24、(1)y甲=15x+7,y乙=16x+3(2)当1<x<4时,选乙快递公司省
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江西科技学院高职单招职业适应性考试备考题库有答案解析
- 2026年莱芜职业技术学院单招综合素质笔试模拟试题带答案解析
- 未来五年黄豆粉企业ESG实践与创新战略分析研究报告
- 未来五年新形势下动物鳞片、贝壳类饮片行业顺势崛起战略制定与实施分析研究报告
- 未来五年家庭护老技能培训企业ESG实践与创新战略分析研究报告
- 未来五年防洪除涝设施管理企业数字化转型与智慧升级战略分析研究报告
- 未来五年智能便携按摩器企业县域市场拓展与下沉战略分析研究报告
- 未来五年植物园管理服务企业数字化转型与智慧升级战略分析研究报告
- 政府投资协议书的范本是
- 买房抵押协议书公司认可
- 2025党史军史知识试题及答案
- 医保DIP付费知识培训课件
- 私立医院的营销方案与管理
- 《人生三修》读书分享会
- 【语文】上海市杨浦区打虎山路第一小学小学二年级上册期末试卷(含答案)
- 集水井施工方案
- 大学美育课件 第十二章 生态美育
- 美国技术贸易壁垒对我国电子产品出口的影响研究-以F企业为例
- 2025至2030中国电站汽轮机行业项目调研及市场前景预测评估报告
- MK6油雾检测器(中文)1
- 靶向阿托品递送系统设计-洞察及研究
评论
0/150
提交评论