版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本溪市重点中学2024年八年级数学第二学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.王师傅驾车到某地办事,汽车出发前油箱中有50升油.王师傅的车每小时耗油12升,行驶3小时后,他在一高速公路服务站先停车加油26升,再吃饭、休息,此过程共耗时1小时,然后他继续行驶,下列图象大致反映油箱中剩余油量y(升)与行驶时间t(小时)之间的函数关系的是()A. B.C. D.2.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的()A.5,12,13 B.3,4,5 C.6,8,10 D.2,3,43.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(
)A.2,3,4 B.,, C.1,,2 D.7,8,94.在平行四边形中,对角线、相交于点,若,则=()A. B. C. D.5.如果,那么下列各式正确的是()A.a+5<b+5 B.5a<5b C.a﹣5<b﹣5 D.6.如图所示,购买一种苹果,所付款金额(单元:元)与购买量(单位:千克)之间的函数图像由线段和射线组成,则一次购买千克这种苹果,比分五次购买,每次购买千克这种苹果可节省()A.元 B.元 C.元 D.元7.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE8.一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为()A.x≥2 B.x<2 C.x>2 D.x≤29.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形 B.平行四边形的对角线互相平分C.矩形的对角线相等 D.对角线相等的四边形是矩形10.在平面直角坐标系中,把点A(1,﹣5)向上平移3个单位后的坐标是().A.(1,-2) B.(1,-8) C.(4,-5) D.(-2,-5)11.下列各式中是分式方程的是()A.1x B.x2+1=y C.12.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在C边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,若AD=6,CD=10,则=()A. B. C. D.二、填空题(每题4分,共24分)13.一次函数y=-2x+1上有两个点A,B,且A(-2,m),B(1,n),则m,n的大小关系为m_____n14.如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.15._____.16.如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.17.已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.18.如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.三、解答题(共78分)19.(8分)已知抛物线与轴交于两点,与轴交于点.(1)求的取值范围;(2)若,直线经过点,与轴交于点,且,求抛物线的解析式;(3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.20.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.21.(8分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?22.(10分)解不等式组:23.(10分)先化简,再求值:÷(1﹣),请你给x赋予一个恰当的值,并求出代数式的值.24.(10分)先化简:(1﹣)•,然后a在﹣1,0,1三个数中选一个你认为合适的数代入求值.25.(12分)先化简,再求值:÷(a-1+),其中a=.26.如图,在四边形中,点分别是对角线上任意两点,且满足,连接,若.求证:(1)(2)四边形是平行四边形.
参考答案一、选择题(每题4分,共48分)1、D【解析】
找准几个关键点,3小时后的油量、然后加油、吃饭、休息这1小时后油量增多26升、然后油量再下降.【详解】根据题意可得:油量先下降到14升,然后加油,油量上升,加油、吃饭、休息的这一小时,油量不减少,然后开始行驶,油量降低.故选D.【点睛】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2、D【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+122=132,能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故不符合题意;C、62+82=102,能构成直角三角形,故不符合题意;D、22+32≠42,不能构成直角三角形,故符合题意.故选:D.【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.3、C【解析】A、22+32≠42,故不是直角三角形,A不符合题意;B、()2+()2≠()2,故不是直角三角形,B不符合题意;C、12+()2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故选C.4、D【解析】
根据平行四边形的性质即可得到结论.【详解】解:∵四边形ABCD是平行四边形,
∴S△AOB=S四边形ABCD=×24=6,
故选:D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.5、D【解析】
根据不等式的性质逐一进行分析判断即可得.【详解】∵,∴a+5>b+5,故A选项错误,5a>5b,故B选项错误,a-5>b-5,故C选项错误,,故D选项正确,故选D.【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.6、B【解析】
可由函数图像计算出2千克以内每千克的价钱,超出2千克后每千克的价钱,再分别计算出一次购买千克和分五次购买各自所付款金额.【详解】解:由图像可得2千克以内每千克的价钱为:(元),超出2千克后每千克的价钱为:(元),一次购买千克所付款金额为:(元),分五次购买所付款金额为:(元),可节省(元).【点睛】本题考查了函数的图像,正确从函数图像获取信息是解题的关键.7、C【解析】
根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.【点睛】本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.8、D【解析】
直接将解集在数轴上表示出来即可,注意实心和空心的区别【详解】数轴上读出不等式解集为x≤2,故选D【点睛】本题考查通过数轴读出不等式解集,属于简单题9、D【解析】试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:A.对角线垂直平分的四边形是菱形,所以A正确;B.平行四边形的对角线相互平分,所以B正确;C.矩形的对角线相等,所以C正确;D.对角线相等的平行四边形是矩形,所以D错误;考点:菱形、矩形的判定,平行四边形、矩形的性质.10、A【解析】
让横坐标不变,纵坐标加3可得到所求点的坐标.【详解】∵-5+3=-2,∴平移后的坐标是(1,-2),故选A.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11、D【解析】
根据分式方程的定义,即可得出答案.【详解】A不是方程,故此选项错误;B是方程,但不是分式方程,故此选项错误;C是一元一次方程,不是分式方程,故此选项错误;D是分式方程,故答案选择D.【点睛】本题考查的是分式方程的定义,分式方程的定义:①形如AB的式子;②其中A,B均为整式,且B中含有字母12、A【解析】
利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC中,x2=22+(6-x)2,可得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,可得y=3,由此即可解决问题.【详解】∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=4,在Rt△ADER中,DE==8,∴EC=10﹣8=2,设BF=EF=x,在Rt△EFC中有:x2=22+(6﹣x)2,∴x=,设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,∴y=3,∴EH=5,∴,故选A.【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、>【解析】
根据一次函数增减性的性质即可解答.【详解】∵一次函数y=-2x+1中,-2<0,∴y随x的增大而减小,∵A(-2,m),B(1,n)在y=-2x+1的图象上,-2<1,∴m>n.故答案为:>.【点睛】本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.14、1.【解析】
由S△BOE+S△COE=S△BOC即可解决问题.【详解】连接OE.∵四边形ABCD是正方形,AC=10,∴AC⊥BD,BO=OC=1,∵EG⊥OB,EF⊥OC,∴S△BOE+S△COE=S△BOC,∴•BO•EG+•OC•EF=•OB•OC,∴×1×EG+×1×EF=×1×1,∴EG+EF=1.故答案为1.【点睛】本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型15、【解析】
原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.16、【解析】
根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【详解】解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE=∵S△ABE=S矩形ABCD=3=•AE•BF,
∴BF=.故答案为:.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.17、或【解析】
分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.【详解】分两种情况:①如图1所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CE,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CE,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE-CF=4-3=1;②如图2所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CF,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CF,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE+CF=4+3=1;综上所述:线段EF的长为:1或1.故答案为:1或1.【点睛】本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.18、13×(23)【解析】
已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13【点睛】本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.三、解答题(共78分)19、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).【解析】
(1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
(1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
(3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.【详解】解:(1)∵抛物线与x轴有两个不同的交点,
∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
∴m≠-1.
(1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
则:D(0,-1),
则有:AD×BD=,
解得:m=1(舍去)或-1,
∴m=-1,
抛物线的表达式为:y=-x1+5x-6①;
(3)存在,理由:
如图所示,点C(0,-6),点D(0,-1),点A(1,0),
直线PA分△ACD的面积为1:4两部分,
即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
将点H、A的坐标代入一次函数表达式并解得:
直线HA的表达式为:y=x-1或y=x-5②,
联立①②并解得:x=或1,
故点P(,-)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.20、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.21、2【解析】
设B车行驶x小时,则A行驶(1+20%)x小时,根据题意即可列出分式方程进行求解.【详解】解:设B车行驶x小时,则A行驶(1+20%)x小时.由题意得解得:x=2经检验:x=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年社交电商运营笔试模拟题含答案
- 2026年医院审计科科长岗位专业面试题含答案
- 2026年海关化验检测岗位样品管理与技术鉴定面试问答含答案
- 2026年育婴员职业技能鉴定题含答案
- 2026年港口项目管理面试题目及核心答案
- 2026年刑事证据审查与判断能力试题含答案
- 2026年企业职工患病或非因工负伤规定试题及解析
- 2026年福州科技职业技术学院单招职业技能考试题库附答案解析
- 2026年辽宁轨道交通职业学院单招职业适应性测试模拟测试卷附答案解析
- 计生专干考试题及答案
- 2025年社区护理年度工作总结与展望
- 2026年黑龙江农业经济职业学院高职单招职业适应性测试模拟试题及答案详解
- 2026年ps一级考试试题
- 2025年保安员理论考试题库附答案
- 2025-2026学年上海市行知实验中学高二上册期中考试语文试题 含答案
- 2026年广东省佛山市六年级数学上册期末考试试卷及答案
- 2026届吉林省长春六中、八中、十一中等省重点中学高二生物第一学期期末联考试题含解析
- 2026届浙江省学军中学英语高三第一学期期末达标检测试题含解析
- 工会女工培训课件
- 2025新疆和田地区“才聚和田·智汇玉都”招才引智招聘工作人员204人(公共基础知识)综合能力测试题附答案解析
- 2026年医疗机构人力资源配置降本增效项目分析方案
评论
0/150
提交评论