广东省中学山一中学2024年数学八年级下册期末调研模拟试题含解析_第1页
广东省中学山一中学2024年数学八年级下册期末调研模拟试题含解析_第2页
广东省中学山一中学2024年数学八年级下册期末调研模拟试题含解析_第3页
广东省中学山一中学2024年数学八年级下册期末调研模拟试题含解析_第4页
广东省中学山一中学2024年数学八年级下册期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中学山一中学2024年数学八年级下册期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm2.下列命题中,不正确的是().A.平行四边形的对角线互相平分 B.矩形的对角线互相垂直且平分C.菱形的对角线互相垂直且平分 D.正方形的对角线相等且互相垂直平分3.如图,点D、E、F分别为∠ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5 B.10 C.20 D.404.要使二次根式有意义,x的取值范围是()A.x≠-3 B.x≥3 C.x≤-3 D.x≥-35.已知多项式是一个关于的完全平方式,则的值为()A.3 B.6 C.3或-3 D.6或-66.如图,在中,平分,,则的周长为()A.4 B.6 C.8 D.127.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A. B. C. D.8.如图,平行四边形ABCD中,若∠A=60°,则∠C的度数为()A.120° B.60° C.30° D.15°9.已知一个多边形的每个外角都要是60°,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形10.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米 B.30米 C.16米 D.15米11.为了了解某校初三年级学生的运算能力,随机抽取了名学生进行测试,将所得成绩(单位:分)整理后,列出下表:分组频率本次测试这名学生成绩良好(大于或等于分为良好)的人数是()A. B. C. D.12.已知等腰三角形两边长为3和7,则周长为().A.13 B.17 C.13或17 D.11二、填空题(每题4分,共24分)13.已知矩形ABCD,给出三个关系式:①AB=BC;②AC=BD;③AC⊥BD,如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________.14.如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____15.在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.16.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.17.若实数x,y满足+,则xy的值是______.18.已知,是关于的方程的两根,且满足,那么的值为________.三、解答题(共78分)19.(8分)解不等式组,并将不等式组的解集在下面的数轴上表示出来:.20.(8分)计算与化简:(1)化简(2)化简,(3)计算(4)计算21.(8分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.22.(10分)计算:(1)(2).23.(10分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,求BE的长.24.(10分)如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.25.(12分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点(1)直接写出点C的坐标;(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.26.求不等式组的解集,并把解集在数轴上表示出来.

参考答案一、选择题(每题4分,共48分)1、C【解析】

利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.【详解】由勾股定理得,AC==10cm∵四边形ABCD是矩形∴OA=OD=AC=×10=5cm∵点E、F分别是AO、AD的中点∴EF=OD=cmAF=×8=4cmAE=OA=cm∴△AEF的周长=+4+=9cm.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.2、B【解析】

A.∵平行四边形的对角线互相平分,故正确;B.∵矩形的对角线互相平分且相等,故不正确;C.∵菱形的对角线互相垂直且平分,故正确;D.∵正方形的对角线相等且互相垂直平分,故正确;故选B.3、C【解析】由已知,点D、E、F分别为∠ABC三边的中点,根据三角形中位线定理,得AB、BC、AC分别是FE、DF、DE的两倍.因此,由△DEF的周长为10,得△ABC的周长为1.故选C.4、D【解析】

根据二次根式的意义,被开方数是非负数.【详解】解:根据题意,得解得,x≥-3.【点睛】此题主要考查自变量的取值范围,二次根式有意义的条件.5、D【解析】

利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵x2+mx+9是关于x的完全平方式,∴x2+mx+9=x2±2×3×x+9∴m=±6,故选:D.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6、C【解析】

在平行四边形ABCD中,AC平分∠DAB,则四边形ABCD为菱形,根据菱形的性质求周长.【详解】解:∵在中,平分,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=1.故选C.【点睛】本题考查了菱形的判定定理,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形,④对角线平分一组对角的平行四边形是菱形.7、D【解析】

整个组的平均成绩=1名学生的总成绩÷1.【详解】这1个人的总成绩10x+5×90=10x+450,除以1可求得平均值为.故选D.【点睛】此题考查了加权平均数的知识,解题的关键是求的1名学生的总成绩.8、B【解析】

直接利用平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形∴∠C=∠A=60°故选:B.【点睛】此题主要考查了平行四边形的性质,熟记平行四边形的对角性质是解题关键.9、B【解析】

根据多边形的边数等于310°除以每一个外角的度数列式计算即可【详解】310°÷10°=1.故这个多边形是六边形.故选:B.【点睛】此题考查多边形内角与外角,难度不大10、B【解析】

设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,∴此时高为18米的旗杆的影长为30m.故选:B.【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.11、D【解析】

先根据表格得到成绩良好的频率,再用100×频率即可得解.【详解】解:由题意可知成绩良好的频率为0.3+0.4=0.7,则这名学生成绩良好的人数是100×0.7=70(人).故选D.【点睛】本题主要考查频率与频数,解此题的关键在于熟练掌握其知识点,在题中准确找到需要的信息.12、B【解析】根据三角形的三边关系两边之和大于第三边进行判断,两腰不能是3,只能是7,周长为7+7+3=17二、填空题(每题4分,共24分)13、①一组邻边相等的矩形是正方形【解析】

根据正方形的判定定理添加一个条件使得矩形是菱形即可.【详解】解:∵四边形ABCD是矩形,AB=BC,∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).故答案为:①,一组邻边相等的矩形是正方形.【点睛】本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.14、2.1【解析】

根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.【详解】.解:∵BD⊥CA,∴∠ADB=90°,在Rt△ADB中,由勾股定理得:AB===1,∵E是AB的中点,∠ADB=90°,∴DE=AB=2.1,故答案为:2.1.【点睛】本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.15、2【解析】

根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.【详解】作点E′和E关于BD对称.则连接AE′交BD于点P,

∵四边形ABCD是菱形,AB=4,E为AD中点,

∴点E′是CD的中点,

∴DE′=DC=×4=2,AE′⊥DC,

∴AE′=.

故答案为2.【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.16、1【解析】

根据菱形的对角线互相垂直平分,利用勾股定理即可解决.【详解】如图,四边形ABCD是菱形,AC=12,BD=16,

∵四边形ABCD是菱形,

∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,

在Rt△AOB中,AB=,

∴菱形ABCD周长为1.

故答案为1

【点睛】本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.17、【解析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】因为,所以=0,,解得:=-2,=,所以=(-2)×=-2.故答案为-2.【点睛】本题考查非负数的性质-算术平方根,非负数的性质-偶次方.18、或【解析】

根据根与系数的关系求出+与·的值,然后代入即可求出m的值.【详解】∵,是关于的方程的两根,∴+=2m-2,·=m2-2m,代入,得m2-2m+2(2m-2)=-1,∴m2+2m-3=0,解之得m=或.故答案为:或.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.三、解答题(共78分)19、,将不等式组的解集在数轴上表示见解析.【解析】

分别解两个不等式得两个不等式的解集,然后根据确定不等式组解集的方法确定解集,最后利用数轴表示其解集.【详解】由(1)可得由(2)可得∴原不等式组解集为【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20、(1)(2)(3)(4)【解析】

(1)原式变形后,利用同分母分式的减法法则计算即可得到结果.(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算,代自己喜欢的值时注意不能使分母为1.(3)先把各根式化为最简二次根式,再合并同类项即可(4)二次根式的性质去括号,再合并同类二次根式。【详解】(1).原式(2)原式(3)原式(4)原式【点睛】此题考查分式的混合运算,掌握运算法则是解题关键21、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.【解析】分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;

(2)把y=14代入(1)中求得的函数关系式求出x的值即可.详解:(1)设一次函数表达式为y=kx+b(k≠0).由题意,得,解得.∴一次函数的表达式为y=1.8x+1.(2)当y=14时,代入得14=1.8x+1,解得x=-2.∴华氏温度14℉所对应的摄氏温度是-2℃.点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.22、(1)28﹣10;(2)3a﹣(+3)b.【解析】

(1)利用完全平方公式计算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【详解】(1)原式=3﹣10+25=28﹣10;(2)原式=3a+b﹣2b﹣3b=3a﹣(+3)b.【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则23、(1)见详解;(2).【解析】

(1)由平行四边形的性质和角平分线的性质,证明∠EBC+∠FCB=90°即可解决问题;(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.构造特殊四边形菱形,利用菱形的性质,结合勾股定理即可解决问题;【详解】(1)证明:∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ABC+∠BCD=180°,

∵BE,CF分别是∠ABC,∠BCD的平分线,

∴∠EBC=∠ABC,∠FCB=∠BCD,

∴∠EBC+∠FCB=90°,

∴∠BGC=90°.

即BE⊥CF.(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.

∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABHE是菱形,∴AH,BE互相垂直平分;

∵BE⊥CF,∴AH∥CF,∴四边形AHCF是平行四边形,∴AP=;在Rt△ABP中,由勾股定理,得:,∴.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.24、(1)A′坐标为(4,7),B′坐标为(10,4);(2)点C′的坐标为(3a-2,3b-2).【解析】

(1)根据题目的叙述,正确地作出图形,然后确定各点的坐标即可;(2)由(1)中坐标分析出x值变化=3x-2,y值变化=3y-2,从而使问题得解.【详解】解:(1)依题意知,以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB放大为△TA′B′,故TA′=3TA,B′T=3BT.则延长如图,连结A’B’得△TA′B′.由图可得A′坐标为(4,7),B′坐标为(10,4);(2)易知A、B坐标由A(2,3),B(4,2)变化为A′(4,7),B′(10,4);则x值变化=3x-2,y值变化=3y-2;若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标,则变化后点C的对应点C′的坐标为:C′(3a-2,3b-2)【点睛】本题难度中等,主要考查了作图-位似变换,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.25、(1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).【解析】

(1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;

(2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;

(3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论