三级配电两级漏保总体要求:施工用电安全知识学习(汇编)_第1页
三级配电两级漏保总体要求:施工用电安全知识学习(汇编)_第2页
三级配电两级漏保总体要求:施工用电安全知识学习(汇编)_第3页
三级配电两级漏保总体要求:施工用电安全知识学习(汇编)_第4页
三级配电两级漏保总体要求:施工用电安全知识学习(汇编)_第5页
已阅读5页,还剩111页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三级配电两级漏保总体要求施工用电安全知识学习★

施工现场配电系统应采用三相五线制、三级配电两级漏电保护系统;并按“一机一闸一箱一漏”的要求进行安装。

★用电设备必须有各自专用的开关箱;

★漏电保护器参数应匹配并灵敏可靠;

★总配电箱与开关箱应安装漏电保护器分配电箱与开关箱、开关箱与用电设备的距离应符合规范要求;1、三级配电、两级漏电保护系统参考图例2、什么是三级配电两级保护?开关箱中漏电保护器的额定漏电动作电流I≤30mA,额定漏电动作时间T≤0.1s,使用于特殊场所的漏电保护器的额定漏电动作电流I≤15mA,额定漏电动作时间T≤0.1s。总配电箱中漏电保护器的额定漏电动作电流I≥30mA,额定漏电动作时间T≥0.1s,但是额定漏电动作电流与额定漏电动作时间的乘积不应大于30mA.s。执行三级配电2、总配电箱设置要求(1)★箱体结构、箱内电器设置及使用应符合规范要求。★配电箱、开关箱电器可靠、完好,进出线整齐。总配电箱设置要求(2)总配电箱设置要求(3)1、总配电箱以下可设若干分配电箱,分配电箱以下可设若干开关箱;总配电箱应设在靠近电源的区域,分配电箱应设在用电设备或负荷相对集中的区域,分配电箱与开关箱的距离不得超过30m,开关箱与其控制的固定式用电设备的水平距离不宜超过3m。(JGJ46-2005第8.1.2条)2、开关箱中漏电保护器的额定漏电动作电流不应大于30mA,额定漏电动作时间不应大于0.1s;使用于潮湿和有腐蚀介质场所的漏电保护器应采用防溅型产品,其额定漏电动作电流不应大于15mA,额定漏电动作时间不应大于0.1s。(JGJ46-2005第8.2.10条)3、总配电箱中漏电保护器的额定漏电动作电流应大于30mA,额定漏电动作时间应大于0.1s,但其额定漏电动作电流与额定漏电动作时间的乘积不应大于30mA•s。(JGJ46-20058.2.11)总配电箱配电接线示例图总配电箱配电接线示例图3、分配电箱接线要求★

箱体结构、箱内电器设置及使用应符合规范要求。★

配电箱、开关箱电器可靠、完好,进出线整齐。分配电箱接线示例图分配电箱接线示例图分配电箱接线示例图分配电箱、开关箱设置示例图开关箱设置示例图开关箱的设置要求配电箱的设置要求

1、电箱编号、用途。2、警示标识。3、电工联系电话。4、离地高度满足规范要求。接地要求分配电箱、开关箱设置要求1、配电箱、开关箱应采用冷轧钢板或阻燃绝缘材料制作,钢板厚度应为1.2~2.0mm,其中开关箱箱体钢板厚度不得小于1.2mm,配电箱箱体钢板厚度不得小于1.5mm,箱体表面应做防腐处理。(JGJ46-2005第8.1.7条)2、配电箱、开关箱的进、出线口应配置固定线卡,进出线应加绝缘护套并成束卡固在箱体上,不得与箱体直接接触。移动式配电箱、开关箱的进、出线应采用橡皮护套绝缘电缆,不得有接头(JGJ46-2005第8.1.16条)3、配电箱、开关箱外形结构应能防雨、防尘。(JGJ46-2005第8.1.17条)4、配电箱、开关箱内的电器必须可靠、完好,严禁使用破损不合格的电器。(JGJ46-2005第8.2.1条)5、总配电箱的电器具备电源隔离,正常接通与分断电路,以及短路、过载、漏电保护功能。(JGJ46-2005第8.2.2条)6、当总路设置总漏电保护器时,还应装设总隔离开关、分路隔离开关以及总断路器、分路断路器或总熔断器、分路熔断器。当所设总漏电保护器同时具备短路过载漏电保护功能的漏电断路器时,可不设总断路器或总熔断器。(JGJ46-2005第8.2.2条)7、当各分路设置分路漏电保护器时,还应装设总隔离开关、分路隔离开关以及总断路器、分路断路器或总熔断器、分路熔断器。当分路所设漏电保护器是同时具备短路、过载、漏电保护功能的漏电断路器时,可不设分路断路器或分路熔断器。(JGJ46-2005第8.2.2条)8、熔断器应选用具有可靠灭弧分断功能的产品。(JGJ46-2005第8.2.2条)9、总开关电器的额定值、动作整定值应与分路开关电器的额定值、动作整定值相适应。(JGJ46-2005第8.2.2条)10、总配电箱应装设电压表、总电流表、电度表及其他需要的仪表。装设电流互感器时,其二次回路必须与保护零线有一个连接点,且严禁断开电路。(JGJ46-2005第8.2.3条)11、分配电箱应装设总隔离开关、分路隔离开关以及总断路器、分路断路器或总熔断器、分路熔断器。其设置和选择应符合前面总配电箱的要求(JGJ46-2005第8.2.4条)12、开关箱必须装设隔离开关、断路器或熔断器,以及漏电保护器。(JGJ46-2005第8.2.5条)13、配电箱、开关箱的电源进线端严禁采用插头和插座活动连接。(JGJ46-2005第8.2.15条)14、对配电箱,开关箱进行定期检查、维修时,必须将其前一级相应的电源隔离开关分闸断电,并悬挂“禁止合闸、有人工作”停电标志牌,严禁带电作业。(JGJ46-2005第8.3.4条)4.其他安装注意事项LOREMIPSUMDOLOR隔离开关箱设置要求:

隔离开关应设置于电源进线端,应采用分断时具有可见分断点,并能同时断开电源所有极的隔离电器。如采用分断时具有可见分断点的断路器,可不另设隔离开关。(JGJ46-2005第8.2.2条)★配电箱必须分设工作零线零线端子板的设置及连接应符合规范要求。LOREMIPSUMDOLOR设置要求:

配电箱的电器安装板上必须设N线端子和PE线端子板。N线端子板必须与金属电器安装板绝缘;PE线端子板必须与金属电器安装板做电器连接。进出线中的N线必须通过N线端子板连接;PE线必须通过PE线端子板连接。(JGJ46-2005第8.1.11条)★箱体安装位置、高度及周边通道应符合规范要求。LOREMIPSUMDOLOR设置要求:

1、配电箱、开关箱应装设在干燥通风及常温场所。(JGJ46-2005第8.1.5条)2、配电箱、开关箱周围应有足够2人同时工作的空间和通道,不得堆放任何妨碍操作、维修的物品;不得有灌木杂草。(JGJ46-2005第8.1.6条)3、配电箱、开关箱应装设端正、牢固;固定式配电箱、开关箱的中心点与地面的垂直距离应为1.4~1.6m;移动式配电箱、开关箱应装设在坚固的支架上,其中心点与地面的垂直距离宜为0.8~1.6m。(JGJ46-2005第8.1.8条)★箱体应设置系统接线图和分路标记;

★箱体应设有门、锁及防雨措施。设置要求:1、配电箱、开关箱应有名称、用途、分路标记及系统接线图。(JGJ46-2005第8.3.1条)2、配电箱、开关箱箱门应配锁,并应由专人负责。(JGJ46-2005第8.3.2)《施工现场临时用电安全技术规范》JGJ46-2005《施工现场临时用电安全技术规范》JGJ46-2005中线中要求三相五线制临时用电电路图注意事项:

1、引起人的感觉最小电流,男为1.1mA,女为0.7mA2、人能自主摆脱带电体的最大电流,就平均值,概率50%而言,男为16mA,女为10.5mA;就最小值,可摆脱率99.5%而言,男为9mA,女为6mA。故能自主摆脱带电体的最大电流不能超过10mA。

3、引起心脏室颤电流仅为50mA,持续时间仅0.1s,且电流持续时间要小于心脏周期时间才安全。

4、开关箱中漏电保护器的额定漏电动作电流不应大于30mA,额定漏电动作时间不应大于0.1s。在潮湿或有腐蚀介质场所的漏电保护器采用防溅弄产品,其额定漏电动作电流不应大于15mA,额定漏电动作时间不应大于0.1s,

5、总配电箱中漏电保护器的额定漏电动作电流应大于30mA,额定漏电动作时间应大于0.1s,但其额定漏电动作电流与额定漏电动作时间的乘积不应大于30mA.s。6、工程上应用的绝缘材料电阻率一般都不低于107Ω.m,工作绝缘不低于2MΩ;保护绝缘不等于5MΩ;加强绝缘不低于7MΩ。

7、特别危险环境中使用手持电动工具采用42V;有电击危险环境中使用手持照明灯或局部照明采用36V或24V;金属容器内、特别潮湿的环境使用手持照明灯采用12V;水下作业场所采用6V。使用行灯电源电压不大于36V,灯头无开关,灯泡外部有金属保护网。配电箱正确的安装方法配电箱正确的安装方法谢谢观看三相五线制

工地电路布线详解国家规定根据JGJ/T-1992《民用建筑电气设计规范》,凡是新建、扩建、企事业、商业、居民住宅、智能建筑、基建施工现场及临时线路,一律实行三相五线制供电方式,做到保护零线和工作零线单独敷设.对现有企业应逐步将三相四线制改为三相五线制供电,具体办法应按三相五线制敷设要求的规定实施.

定义:三级配电系统

总配电箱为一级,分配电箱为二级,末级配电箱为三级。

定义:三相电的概念我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。什么是电源中性点?

中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。定义:三相五线制

在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示.为什么不是“五相”“六相”?你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°分布时,交变磁力线均可最大限度的切割它们,成而最以限度的发出电能。而三相用电器呢,除了相反的原理外,三相互成120°的回路又能最大限度的使用电能!三相五线制供电的原理在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。从线路的性质上来说,火线(相线)是提供能源的线路,零线是单相电路中,给提供能源的线路一条电流回路(和相线形成电流通道)的线路,地线是作为保护电器设备、防止漏电而发生事故的一条“非正常”电流通道。这三条线,正常工作时,由相线(某一个单位时间内)提供电流,经过用电设备(负载)后由零线回到电源端;正常情况下,地线是没有任何电流通过的。所以从性质上来看,这三条线路中的零线和地线,是不允许“并用”或合用的。

“PE”即英文“protectingearthing”的缩写,意思是“保护导体、保护接地”。“N”即英文“neutralpoint”意思“中性点,零压点”

接地及中性点的英文缩写为什么在变压器端接地?按照规定,380伏(三相)的民用电源的中性点是不应该在进户端接地的(在变压器端接地,这个接地是考虑到不能因悬浮点位造成高于电源电压的点位,用户端的接地与变压器端的接地在大地中是存在一定的电阻的),如果把电源的中性点直接接地(这在民用电施工中是不允许的),漏电保护器就失去了作用,不能保护人身和电器设备的短路了。

因此,三相五线制地线在供电变压器侧和中性线接到一起,但进入用户侧后不能当作零线使用,否则发生混乱后就与三相四线制无异了。定义:TN—S接零保护系统

它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,TN-S供电系统的特点如下:

1、系统正常运行时,专用保护线上没有电流,只是工作零线上有不平衡电流。PE线对地没有电压,所以电气设备金属外壳接零保护是接在专用保护线PE上,安全可靠。

2、工作零线只用作单相照明负载回路。

3、专用保护线PE不许断线,也不许进入漏电开关。

4、干线上使用漏电保护器,工作零线不得有重复接地,而PE线有重复接地,但是不经过漏电保护器,所以TN-S系统供电干线上也可以安装漏电保护器。

5、TN-S方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在建筑工程工前的“三通一平”(电通、水通、路通和地平——必须采用TN-S方式供电系统。

漏电保护器的工作原理

如果有人体触摸到电源的线端即火线,或电器设备内部漏电,这时电流从火线通过人体或电器设备外壳流入大地,而不流经零线,火线和零线的电流就会不相等,漏电保护器检测到这部分电流差别后立刻跳闸保护人身和电器的安全,一般这个差流选择在几十毫安。判定是否漏电的的原理依据是:流进和流出开关的电流必须相等,否则就判定为漏电。当漏电电流达到和超过一定的程度时,产生保护动作----跳闸。判定的阈值是可以设定的,因为电路就是我们设计的。只是应用时要根据不同的场合,选用不同灵敏度的保护器。

如果是用于人身安全保护为目的,则漏电电流小于30mA,视为安全,如大于30mA,则视为不安全,将产生保护动作。漏电保护的额定电流30mA的漏电保护器或保护开关,属于同敏度漏电保护器或保护开关。其生产保护动作时间还应在0.1秒以内。这两个参数的选择主要依据是:30mA:人体的感知电流----男为1.1mA女为0.7mA;摆脱电流男为16mA女为10.5mA,儿童要较成人为小;在较短时间内危及生命的电流是致使电流,从两个方面理解----一是电流达到50mA就会引起心室颤动,有生命危险,而100mA以上的电流则足以将人致死,30mA以下暂时不会有生命危险。0.1秒:人的心脏每收缩扩张一次有0.1秒的间歇,而在这0.1秒内,心脏对电流最敏感,若电流在这一瞬间通过心脏,即使电流较小,也会引起心脏颤动,造成危险。但必须注意,通常的漏电保护开关或漏电保护器只适用于工频电源,对其它电源,如直流电源、高频电源是不适用的,千万不能乱用。空气开关:

空气开关是控制电气回路的分合开关,若以空气为灭弧介质的称空气开关。一般以额定电流(负荷)选择,做为电气回路的总开关使用。漏电保护器:

当一个空气开关带有漏电保护功能时,称之为漏电保护开关。如果是一个单单用于漏电保护的电气装置,则称之为漏电保护器。

导线面积应通过计算确定(一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2)

外电变压器低压输出

到总配电房线路接法

1、线路由外电变压器低压输出及中性点接地引入到总配电房。

2、线路的黄、绿、红三相线接入到总配电箱的总隔离开关上。

隔离开关必须选用分断时有明显可见分断点的开关。

3、淡蓝色中性接地线接入到第一级漏电保护器上的接线端。

4、将中性接地线用导线引出到PE端子作为保护零线。

5、从第一级漏电保护器“N”出线端接引到工作零接线端。

6、从第一级总漏电保护器引出相线到多路分路隔离开关。

现以三路分三路为例,详述总配电箱到分配电箱的接法1、从总配电箱的分配电开关分别引出黄、绿、红(A、B、C)三相线,淡蓝色工作零线从工作零接线端引出,黄绿双色PE保护零线从PE端子引出

总配电箱门与箱体间必须采用编织软铜线可靠连接作保护接零

五线之间架设的安全距离2、线路的黄、绿、红三相线接入到二级分配电箱的总隔离开关上,淡蓝色的N线接入到漏电保护器的N端上,通过漏保后接到工作零线端子板。

3、黄绿双色的PE线接入到保护零端子板PE板上

4、从二级分配电箱的总隔离开关引出三相线到漏电保护器。5、从漏电保护器接线端引出相线到分路隔离开关。

PE线不能进入漏电保护器,因为线路末端漏电保护器动作会使前级漏电保护器跳闸造成大范围停电6、黄、绿、红三相线分别从分配电箱的分路隔离开关引出,从N板接线端子引出淡蓝色的工作零线,从PE板接线端子引出黄绿双色保护零线。分配电箱门与箱体间必须采用

编织软铜线可靠连接作保护接零

现以三路分路为例,讲述分

配电箱到末级开关箱的接法

按规定要求单相开关箱

与三相开关箱应分开设置固定式末级开关箱的中心点与

地面的垂直距离应为1.4~1.6m移动式末级开关箱其中心与

地面的垂直距离宜为0.8~1.6m单相末级开关箱线路接法

1、引入线可选用任意一条相线(以红色线为例),接入到单相开关箱的隔离开关。

2、将淡蓝色的N线也接入到单相开关箱的隔离开关,将黄绿双色的PE线接入到PE板接线端子上。

3、从隔离开关的接线端引出红色相线和蓝色N线到漏电保护器的接线端子上。4、红色相线和蓝色N线从漏电保护器接线端引出,黄绿双色PE线从PE板的接线端子引出。此时照明设备可用三相末级开关箱线路接法

1、黄、绿、红三相线分别接入到三相开关箱的隔离开关。黄绿双色的PE线接入到PE板接线端子上。从隔离开关的接线端引出黄、绿、红三相线到漏电保护器的接线端子上。2、黄、绿、红三相线从漏电保护器接线端引出,黄绿双色PE线从PE板的接线端子引出此时动力设备可用

三相五线制与三相四线制的比较

(1)基本供电系统介绍:常用的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格.国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统.其中TN系统又分为TN-C、TN-S系统.

TT式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统.第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关.在TT系统中负载的所有接地均称为保护接地。

TN方式供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN表示.TN-C方式供电系统是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,即常用的三相四线制供电方式.TN-S式供电系统是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,即常用的三相五线制供电方式.

IT方式供电系统,其中I表示电源侧没有工作接地,或经过高阻抗接地.第二个字母T表示负载侧电气设备进行接地保护.IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好.一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如连续生产装置、大医院的手术室、ICU病房、地下矿井等处.几种供电方式的区别三相四线制(TN-C)与三相

五线制(TN-S)系统的比较

在三相四线制供电方式中,由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化、导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利.

特别是在零线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的.采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在"地"电位,从而消除了设备产生危险电压的隐患.

一般情况下,中性线是以大地作为导体,故其对地电压应为零,称为零线.因此相线对地必然形成一定的电压差,可以形成电流回路,称其为火线.正常供电回路由相线(火线)和中线(零线)形成.地线是仪器设备的外壳或屏蔽系统就近与大地连接的导线,其对地电阻小于4欧姆;它不参与供电回路,主要是保护操作人员人身安全或抗干扰用的.很多情况下,中线和大地的连接问题会导致用电端中线对地电压大于零,因此三相五线制种将中性线(N线)和地线分开对消除安全隐患具有重要意义.在三相四线制供电方式中,主要采用TN-C系统供电,对于单相回路存在较大的安全缺陷.单相二线供电方式,最大缺陷是在发生电器外壳碰相线时,直接将220V相电压施加给此时正巧触摸到的人,从而发生触电事故.因此如果把接外壳的保护线PE和中性线N并联合用一根,实际上这也是极不安全的.建筑物的配电线路由于接头松脱、导线断线等故障,很可能造成下图所示A点处开路,此时当其中一台设备开关接通后,在A点后面所有中性线上,将出现相电压,这个高电压又被设备接地引至所有插入插座的用电设备外壳上,而且其后的设备即使并未开启,外壳上也有220V电压,这是十分危险的.TN-C系统单相回路断零示意图

三相四线制零线断路,为什么有的电器烧,有的不烧?在实际中三相负载严重分布不平衡,总零线断开,由三相四线制供电系统变为三相三线制,使中性点严重位移,导致三相负载端相电压不再对称,负载相当于在相与相之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论