2024高中数学教学论文-转化与化归思想在立体几何中的体现_第1页
2024高中数学教学论文-转化与化归思想在立体几何中的体现_第2页
2024高中数学教学论文-转化与化归思想在立体几何中的体现_第3页
2024高中数学教学论文-转化与化归思想在立体几何中的体现_第4页
2024高中数学教学论文-转化与化归思想在立体几何中的体现_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024高中数学教学论文-转化与化归思想在立体几何中的体现转化与化归思想在立体几何中的体现摘要:转化与化归的思想,是数学学科与其他学科相比,一个特有的数学思想方法,化归思想的核心是把生问题转化为熟问题,我们平时解题的过程实质上就是一个缩小已知与求解差异的过程,一个生题变熟题的过程。因此,解每一道题,无论是难题还是易题,都离不开化归,所以说,转化与化归是数学思想方法的灵魂。本文就其基本理论和其在立体几何中的体现做一简单介绍。关键词:转化;化归;思想;立体几何;体现解决数学问题时,常遇到一些问题直接求解较为困难,这时就需要通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。转化与化归思想的实质是揭示联系,实现转化。除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。转化与化归的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。转化思想方法的特点是实现问题的规范化,模式化,以便应用已知的理论、方法和技巧达到问题的解决,其形式如下图:转化已知理论、方法、技巧问题规范化问题解答原问题的解转化已知理论、方法、技巧问题规范化问题解答原问题的解问题规范化问题解答原问题的解已知理论、方法、技巧问题规范化问题解答原问题的解还原还原转化与化归应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。转化、化归的思想贯穿立体几何的始终,是处理立体几何问题的基本思想方法,具体体现在如下几个方面:(1)把立体几何问题向平面几何转化,即立体问题平面化,它是解决立体几何问题始终如一的原则。如异面直线所成的角、线面所成的角、二面角这三种空间角都是用平面角定义的,在解决有关空间角的问题时,一般是将它们转化为平面角来处理,最终化归为解三角形。(2)在讨论平行与垂直关系时,应注意用“线线平行线面平行面面平行”与“线线垂直线面垂直面面垂直”进行转化。(3)在计算立体几何中的距离问题时,根据它们的定义都可以化归为两点间的距离,。例如,求异面直线的距离;或化归为求公垂线段的长;或化归为线面距离或面面距离,而这三种方法最终又化归为两点间的距离。另外,等体积法、图形语言与符号语言、文字语言的互译等也都体现了转化思想的应用。下面枚举数例,有不妥之处敬请指正。例1.已知、是两条异面直线,求证过且平行的平面必平行于过且平行的平面。A图1—1【解答】如图1—1所示,任取点A,由推论1设点A与确定平面,且,A图1—1∥,则∥又∵∴∥又∵∥,,、∴∥,故原命题正确。【点评】在面面关系中,要善于用和线线、线面平行的概念判定和性质进行类比、探索、总结,特别要注意互相转化,达到由线线、线面化归为面面问题,使之统一深化。例2.如图1—2,在矩形ABCD中,AB=,BC=3,沿对角线BD把△BCD折起使C点移到C1点,且C1在平面ABD内的射影O恰好落在AB上。(1)求证:AC1⊥BC1;(2)求AB与平面BC1D所成的正弦值;图1—2OGHC图1—2OGHC1DCBA【解答】(1)由题意,C1O⊥面ABD。又C1O面ABC1,∴面ABC1⊥面ABD。又∵AD⊥AB,面ABC1∩面ABD=AB,∴AD⊥面ABC1,∴AD⊥BC1,又BC1⊥C1D,AD∩C1D=D,∴BC1⊥面AC1D,∴BC1⊥AC1。(还可由三垂线定理证AD⊥BC1)(2)∵BC1⊥面AC1D,BC1面BC1D,∴面AC1D⊥面BC1D,作AH⊥C1D,于H,则AH⊥面BC1D。连结BH,则BH为AB在面BC1D上的射影,∴∠ABH即为AB与面BC1D所成的角。又在Rt△AC1D中,C1D=,AD=3,∴AC1=,∴AH=,∴sin∠ABH==。即AB与面BC1D所成角的正弦值为。(3)过O作OG⊥BD于G,连结C1G,则C1G⊥BD。则∠C1GO为二面角C1—BD—A的平面角。在Rt△AC1B中,C1O==在Rt△BC1D中,C1G==。∴OG==,∴tan∠C1GO==.即二面角C1—BD—A的正切值为。【点评】(1)本题证线线垂直过程中用到了线线垂直、线面垂直、面面垂直相互转化的思想线线垂直线面垂直面面垂直(2)通过作线面角与二面角的平面角,将空间角的问题转化为平面角处理。例3.如图1—3,正三棱柱ABC-A1B1C1的棱长都为,D是AB的中点,连结A1D,DC,A1C.HECDC1BHECDC1B1BAA1图1—3(2)求BC1到平面A1DC的距离。【解答】(1)连结AC1,交A1C于点E,则平面ABC1∩平面A1DC=DE.因为E是AC1的中点,D是AB的中点,所以DE∥BC1.而DE平面A1DC,BC1平面A1DC,∴BC1∥平面A1DC;(2)由(1)知BC1∥平面A1DC,所以BC1上任一点到平面A1DC的距离都是BC1到平面的距离。所以求点B到平面A1DC的距离即可,又因为AB与平面A1DC相交于AB的中点D。所以点A、B到平面A1DC的距离相等,因为CD⊥AB,CD⊥AA1,所以CD⊥平面A1ABB1。所以A—A1D—C是直二面角,过点A作平面A1DC的垂线,垂足H在A1D上。在Rt△A1AD上,A1A·AD=A1D·AH,所以AH===。所以BC1到平面A1DC的距离是。【点评】线到面的距离是转化为点到平面的距离求解的,线段与平面交于中点时两端点到平面的距离相等,又可化成另一端点到平面的距离。参考文献:梁大鹏,王俊杰.思想方法高中数学.北京:人民日报出版社,2006年3月第二版.582-610.皱清林等.高中数学思想方法与能力培养.四川:四川教育出版社,1995年10月第一版.324-385.高考专题:解析几何常规题型及方法本章节处理方法建议:纵观2006年全国各省市18套文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分”的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很大。有容易题,有中难题。因此在复习中基调为狠抓基础。不能因为高考中的解几解答题较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几分算几分。三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。典型例题给定双曲线。过A(2,1)的直线与双曲线交于两点及,求线段的中点P的轨迹方程。分析:设,代入方程得,。两式相减得。又设中点P(x,y),将,代入,当时得。又,代入得。当弦斜率不存在时,其中点P(2,0)的坐标也满足上述方程。因此所求轨迹方程是说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。典型例题设P(x,y)为椭圆上任一点,,为焦点,,。(1)求证离心率;(2)求的最值。分析:(1)设,,由正弦定理得。得,(2)。当时,最小值是;当时,最大值是。(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。(1)证明:抛物线的准线为由直线x+y=t与x轴的交点(t,0)在准线右边,得故直线与抛物线总有两个交点。(2)解:设点A(x1,y1),点B(x2,y2)(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。典型例题已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。解:(1)直线L的方程为:y=x-a,将y=x-a代入抛物线方程y2=2px,得:设直线L与抛物线两交点的坐标分别为A(x1,y1),B(x2,y2),则,又y1=x1-a,y2=x2-a,解得:(2)设AB的垂直平分线交AB与点Q,令其坐标为(x3,y3),则由中点坐标公式得:,所以|QM|2=(a+p-a)2+(p-0)2=2p2.又△MNQ为等腰直角三角形,所以|QM|=|QN|=,所以S△NAB=,即△NAB面积的最大值为2。(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。典型例题已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。分析:曲线的形状已知,可以用待定系数法。设出它们的方程,L:y=kx(k≠0),C:y2=2px(p>0)设A、B关于L的对称点分别为A/、B/,则利用对称性可求得它们的坐标分别为:A/(),B()。因为A、B均在抛物线上,代入,消去p,得:k2-k-1=0.解得:k=,p=.所以直线L的方程为:y=x,抛物线C的方程为y2=x.2.曲线的形状未知-----求轨迹方程典型例题MNQO已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数(>0),MNQO分析:如图,设MN切圆C于点N,则动点M组成的集合是:P={M||MN|=|MQ|},由平面几何知识可知:|MN|2=|MO|2-|ON|2=|MO|2-1,将M点坐标代入,可得:(2-1)(x2+y2)-42x+(1+42)=0.当=1时它表示一条直线;当≠1时,它表示圆。这种方法叫做直接法。(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)典型例题已知椭圆C的方程,试确定m的取值范围,使得对于直线,椭圆C上有不同两点关于直线对称。分析:椭圆上两点,,代入方程,相减得。又,,,代入得。又由解得交点。交点在椭圆内,则有,得。(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用来处理或用向量的坐标运算来处理。典型例题已知直线的斜率为,且过点,抛物线,直线与抛物线C有两个不同的交点(如图)。(1)求的取值范围;(2)直线的倾斜角为何值时,A、B与抛物线C的焦点连线互相垂直。分析:(1)直线代入抛物线方程得,由,得。(2)由上面方程得,,焦点为。由,得,或B:解题的技巧方面在教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。下面举例说明:(1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。典型例题设直线与圆相交于P、Q两点,O为坐标原点,若,求的值。解:圆过原点,并且,是圆的直径,圆心的坐标为又在直线上,即为所求。评注:此题若不充分利用一系列几何条件:该圆过原点并且,PQ是圆的直径,圆心在直线上,而是设再由和韦达定理求,将会增大运算量。评注:此题若不能挖掘利用几何条件,点M是在以OP为直径的圆周上,而利用参数方程等方法,计算量将很大,并且比较麻烦。二.充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。典型例题已知中心在原点O,焦点在轴上的椭圆与直线相交于P、Q两点,且,,求此椭圆方程。解:设椭圆方程为,直线与椭圆相交于P、两点。由方程组消去后得由,得(1)又P、Q在直线上,把(1)代入,得,即化简后,得(4)由,得把(2)代入,得,解得或代入(4)后,解得或由,得。所求椭圆方程为评注:此题充分利用了韦达定理及“设而不求”的策略,简化了计算。三.充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。典型例题求经过两已知圆和0的交点,且圆心在直线:上的圆的方程。解:设所求圆的方程为:即,其圆心为C()又C在直线上,,解得,代入所设圆的方程得为所求。评注:此题因利用曲线系方程而避免求曲线的交点,故简化了计算。四、充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。典型例题P为椭圆上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。五、线段长的几种简便计算方法①充分利用现成结果,减少运算过程一般地,求直线与圆锥曲线相交的弦AB长的方法是:把直线方程代入圆锥曲线方程中,得到型如的方程,方程的两根设为,,判别式为△,则,若直接用结论,能减少配方、开方等运算过程。例求直线被椭圆所截得的线段AB的长。②结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。例、是椭圆的两个焦点,AB是经过的弦,若,求值③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例点A(3,2)为定点,点F是抛物线的焦点,点P在抛物线上移动,若取得最小值,求点P的坐标。理解数学、理解学生、理解教学是课堂自然推进的源动力──“数学归纳法”教学反思

在听课前,认真拜读了章建跃老师的文章《追求数学课堂的本来面目》,通过两位教师的课堂实践,笔者对章老师谈到的教学立意问题中“始终要把数学教学的‘育人’目标放在心上”观点很受启发,对“理解数学、理解学生、理解教学”有进一步的实践认识,同时对数学归纳法这节内容的教学也有了更深刻的理解。1.对“数学归纳法”的理解1.1数学归纳法的本质特征数学归纳法是一种用于与正整数n有关的数学命题的证明方法,由n的无穷尽特性,成为数学归纳法这一方法探寻的源动力。正整数命题的数学归纳法证明步骤中只证明了两个命题:命题1:p(1)为真;命题2:若p(k)为真,则p(k+1)为真。命题p(k)和命题p(k+1)之间的逻辑关系和依存关系使得推理得以持续进行,即由命题1正确推得命题2也正确,由命题2正确推得命题3也正确,……,实现无穷三段论的循环论证。因此,用有限的步骤论证无限结论是数学归纳法的一个本质特征。1.2数学归纳法的核心思想学生对于归纳假设常常会感到疑惑不解:要证明某个命题正确,怎么可假以设这个命题正确呢?命题p(k)与命题p(n)有何关系?假设命题p(k)正确在证明过程中起什么作用?理解这些问题,也就理解了数学归纳法的思想内涵:数学归纳法要证明的命题p(n)是一个命题序列,其中p(k)与p(k+1)是该命题序列中的两个连续命题。为了证明这个命题序列整体的正确性,我们首先得证明p(1)为真(是归纳奠基);在归纳递推过程中k是一个变动的量,假设命题p(k)为真是递推证明的条件,由p(k)为真推出p(k+1)为真,表明前一个命题为真必可推出它的后继命题也为真。由于有了第一步的奠基验证,归纳假设是有依据的,因此我们所要证的命题序列中,可由归纳递推p(1)p(2),p(2)p(3),…,p(k)p(k+1),…。根据归纳公理证明了{p(1),p(2):…,p(n),…}中命题都是正确,即对任意正整数n,命题都成立。可以说,归纳假设是递推的接力棒,没有归纳假设,递推就无法进行。通过上述问题的解决过程不难发现,数学归纳法的核心思想是归纳递推思想。1.3数学归纳法的育人价值数学归纳法虽不是归纳法(是一种严格的演绎推理证明方法),但是在数学归纳法的思维模式中还是能找到归纳法的一些影子的:事先通过大量个别事实的观察,通过归纳概括出一般性的结论,然后利用数学归纳法的证明解决问题,即归纳结论推理证明两个逻辑段。其完整过程如图1所示。因此数学归纳法为我们提供了一种数学的思维方法:“观察——归纳——猜想——证明”,这种思维模式的教学是培养学生理性思维的有效载体,它本身就是一种素质教育。作为概念起始课,在教学中应强调它的思维作用,学会用数学归纳法的思维方式去思考问题,而不是过分强调它的证题格式、证题技巧.2.理解学生是课堂推进的基本保障影响课堂教学成功与否最根本的因素是学生的学,由于学生与教师在认知结构、认识方式以及对概念的同化能力上存在着很大的差异的,教师的教学设计立意再高,过程设计得再生动形象,而如果学生最终无法得到内化,那么教学还是大打折扣的。因此教师在开展教学设计时,必须要进行换位思考,要站在学生的立场,根据的学生的认知基础、认知心理以及认知障碍来设计教学环节。2.1了解学生的学习心理由于年龄特征,高中学生在学习新知识的过程中往往会伴随着一些叛逆心理与求异心理(类似于好斗心理与标新心理),他们会在课堂上提出一些在教师预设之外的问题,甚至与教师“对着干”。学生的这些学习心理对教师开展课堂教学来讲是一把“双刃剑”,把握不好,会使课堂推进失控,迷失在学生无休止的“题”外争论;把握得当,则会激发学生的学习热情与探求新知欲望。比如数学归纳法的常态课教学中,学生可能会提出:为什么要学数学归纳法(尤其是在数学归纳法证明要求已有所降低的情况下,能用数学归纳法解决的证明问题也往往可以用演绎推理法证明)?明明不是归纳法,干吗还要叫数学归纳法?假设的东西那能可信?对于课堂中两位教师都提及的由递推公式求通项问题:“已知数列的第1项,且,计算由此推测计算的公式,并给出证明.”;“已知数列{an}:,写出数列{an}的通项公式

.”学生偏不用数学归纳法而用倒数构造等差数列和累乘法来做,等等。教师在教学设计时,如若考虑不周或者不考虑到学生可能会出现的这些学习心理,将会使教师在课堂上处于尴尬的境地:如果教师回答了学生的问题,将干扰学生对数学归纳法思想的体验,导致教学目标得不到实现,甚至大大降低了数学归纳法的信度(上述涉及的问题1、4)。如果置之不理,则会挫伤学生的学习积极性。但是有些问题则是教师不可回避的,如上述提及的问题3(问题已经触及数学归纳法本质内涵),如果处理得当,将会使数学归纳法思想真正植根于学生的内心。因此从学生学习心理角度对概念进行深度剖析,做好预案机制,是教学预设达成的重要保障。2.2了解学生的认知结构学生在学习数学归纳法之前,有关正整数命题的问题主要在数列的学习中接触,由于间隔时间过长,数列学习中不完全归纳思想已经深深印在学生内心,他们对于由猜想产生的结论会不加怀疑,在这种认识的作用下,学生会怀疑学习数学归纳法的必要性,导致在观念上首先会排斥它。因此本节课的教学引入首先要解决的问题是如何让学生在认知上形成冲突,对固有的知识结构产生怀疑,进而形成对数学归纳法探求的迫切心理。教学中,黄岩中学李柏青老师(下称教师甲)首先通过“试一试,猜一猜”的方式向学生呈现了两个问题:问题1.已知某个数列{an}的前三项,你还可以自由地选择几项进行检验,你能猜出此数列的通项公式吗?()问题2.已知数列{an}:,an=?在问题1中学生经历“有限验证——猜想——错误”的过程,打破了与原有认知的平衡,意识到这种方式得出的结论具有不可靠性,由此形成这样的认识:要确保猜想的结果真实性,必须要加以证明!但是学生常常会有这样的思维习惯:这种利用递推公式可由前一项推出后一项的求数列通项公式的方法以前是屡试不爽,今天也不轻易放弃,但是又考虑到正整数n的无限性,这样的验证会永无至尽!于是在学生的意识(或者潜意识)中就会有“以有限证明替代无限论证”的想法,为自然引出数学归纳法作了铺垫(体会学数学归纳法是必要的)。2.3了解学生在思维深刻性方面的不足教学中我们经常会遇到这样一些情景:课堂上师生互动热烈,师生对话中学生对教师提出的问题能作出正确的判断,或者学生的课堂活动完全在教师的预设中。这很容易给我们产生一些错觉,以为学生对所学内容已经掌握了,对概念中蕴涵的思想方法已有所体会了。其实这种对话、活动往往集中在部分头脑灵活、反应较快的学生对教师预设的问题的一种顺应,他们的思维并非一定触及概念的思想内涵,还有一部分学生则是充当听众的角色。产生这种情况的原因主要在于教师在预设设时,是凭自己对对概念的理解角度,没有站在学生的角度开展问题诊断分析,或者已经考虑到学生的理解困难,但是被假象所蒙蔽,高估学生的思维能力,或者高估学生深层推进的自觉意识,没能将思维提升到一个高度让学生去体验。“数学归纳法”是高中阶段一个比较抽象的数学概念,学生对其中的证明步骤的掌握不会有困难,但是要理解概念以及概念背后的思想方法不是一件容易的事,尤其是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论