版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年西藏自治区拉萨市城关区拉萨中学高考数学三模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,,则=()A. B. C. D.2.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.263.已知等式成立,则()A.0 B.5 C.7 D.134.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.125.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A.函数的最小正周期是B.函数的图象关于点成中心对称C.函数在单调递增D.函数的图象向右平移后关于原点成中心对称6.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.17.已知,,,若,则正数可以为()A.4 B.23 C.8 D.178.的展开式中,含项的系数为()A. B. C. D.9.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.10.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.11.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是()A. B.C. D.12.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.14.若,则=______,=______.15.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.16.复数为虚数单位)的虚部为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,、、分别是、、的中点.(1)证明:平面;(2)若底面是正三角形,,在底面的投影为,求到平面的距离.18.(12分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.19.(12分)已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.20.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.21.(12分)求下列函数的导数:(1)(2)22.(10分)设,,,.(1)若的最小值为4,求的值;(2)若,证明:或.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:化简集合故选C.考点:集合的运算.2、D【解析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.3、D【解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.4、C【解析】
分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.5、B【解析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.6、B【解析】
过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.7、C【解析】
首先根据对数函数的性质求出的取值范围,再代入验证即可;【详解】解:∵,∴当时,满足,∴实数可以为8.故选:C【点睛】本题考查对数函数的性质的应用,属于基础题.8、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.9、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.10、D【解析】
首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11、A【解析】
由题可得出的坐标为,再利用点对称的性质,即可求出和.【详解】根据题意,,所以点的坐标为,又,所以.故选:A.【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.12、A【解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
代入求解得,再求准线方程即可.【详解】解:双曲线经过点,,解得,即.又,故该双曲线的准线方程为:.故答案为:.【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.14、10【解析】
①根据换底公式计算即可得解;②根据同底对数加法法则,结合①的结果即可求解.【详解】①由题:,则;②由①可得:.故答案为:①1,②0【点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.15、【解析】
先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【详解】由已知及正弦定理,得,所以,,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.16、1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,,为正三角形,且为的中点,,,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.18、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接,由比例可得∥,进而得线面平行;(Ⅱ)过点作的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,设平面的法向量为,由求二面角余弦即可.试题解析:(Ⅰ)证明:连接,梯形,,易知:;又,则∥;平面,平面,可得:∥平面;(Ⅱ)侧面是梯形,,,,则为二面角的平面角,;均为正三角形,在平面内,过点作的垂线,如图建立空间直角坐标系,不妨设,则,故点,;设平面的法向量为,则有:;设平面的法向量为,则有:;,故平面与平面所成的锐二面角的余弦值为.19、≤x≤【解析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.20、(1)(2)直线恒过定点,详见解析【解析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题.21、(1);(2).【解析】
(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鲁教版八年级数学上册第二章分式与分式方程2第一课时分式的乘除运算课件
- 苏教版八年级生物上册第5单元生物的多样性第十四章丰富多彩的生物世界素养综合检测课件
- 化 学制取氧气课件-2024-2025学年九年级化学人教版(2024)上册
- 广西钦州市第四中学2024-2025学年高一上学期期中考试政治试题
- 八年级生物期中模拟卷(考试版A4)(成都专用)
- 文员基础知识全套题库单选题100道及答案解析
- 湘教版四年级下册音乐教案与教学计划以及封面
- 桃花心木课件教学课件
- 惊蛰创意美术课件
- 地球外部圈层结构
- 新会陈皮培训课件
- 浙江科天水性科技有限责任公司年产100000吨水性聚氨酯合成革树脂项目环境影响报告书
- 答题卡填涂注意事项
- 数据挖掘(第2版)全套教学课件
- 消防警示标识与安全标示标牌
- 《认知及认知障碍》课件
- 万千教育学前幼儿园探究性环境创设:让孩子成为热情主动的学习
- 劳务派遣劳务外包服务方案(技术方案)
- 项目总监聘用合同范本
- 大数据技术介绍
- 第七版精神病学配套课件-14-自杀、危险性评估及危机干预
评论
0/150
提交评论