云南省大理州祥云县2024届数学八年级下册期末监测试题含解析_第1页
云南省大理州祥云县2024届数学八年级下册期末监测试题含解析_第2页
云南省大理州祥云县2024届数学八年级下册期末监测试题含解析_第3页
云南省大理州祥云县2024届数学八年级下册期末监测试题含解析_第4页
云南省大理州祥云县2024届数学八年级下册期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大理州祥云县2024届数学八年级下册期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各组线段a、b、c中,能组成直角三角形的是()A.a=4,b=5,c=6 B.a=1,b=,c=2C.a=1,b=1,c=3 D.a=5,b=12,c=122.设正比例函数的图象经过点,且的值随x值的增大而减小,则()A.2 B.-2 C.4 D.-43.当a满足条件()时,式子在实数范围内有意义.A.a<−3 B.a≤−3 C.a>−3 D.a≥−34.如图所示,函数y=k(x+1)与y=kxk<0A. B. C. D.5.已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤26.若一次函数的图象如图所示,则不等式的解集为()A. B. C. D.7.一个多边形的每个外角都等于45°,则这个多边形的边数是()A.11 B.10 C.9 D.88.下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形9.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.910.下列多项式中,不能因式分解的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标___.12.工人师傅给一幅长为,宽为的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为.设上面留白部分的宽度为,可列得方程为________。13.若一元二次方程有两个相等的实数根,则的值是________。14.将直线的图象向上平移3个单位长度,得到直线______.15.如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)16.若y与x的函数关系式为y=2x-2,当x=2时,y的值为_______.17.分解因式:1﹣x2=.18.169的算术平方根是______.三、解答题(共66分)19.(10分)小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A款手机每部售价多少元?(2)该店计划新进一批A款手机和B款手机共60部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?A,B两款手机的进货和销售价格如下表:A款手机B款手机进货价格(元)11001400销售价格(元)今年的销售价格200020.(6分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.(1)求实际每年绿化面积是多少万平方米(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(6分)如图,已知直线与直线相交于点.(1)求、的值;(2)请结合图象直接写出不等式的解集.22.(8分)有这样一个问题:探究函数的图象与性质.小亮根据学习函数的经验,对函数的图象与性质进行了探究。下面是小亮的探究过程,请补充完整:(1)函数中自变量x的取值范围是_________.(2)下表是y与x的几组对应值.x…-3-2-102345…y…---4-5-7m-1-2--…求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.23.(8分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了解学生对四大名著的阅读情况,就“四大古典名著”你读完了几部的问题在全校900名学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查被调查的学生__________名,学生阅读名著数量(部)的众数是__________,中位数是__________;(2)扇形统计图中“1部”所在扇形的圆心角为__________度;(3)请将条形统计图补充完整;(4)试估算全校大约有多少学生读完了3部以上(含3部)名著.24.(8分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?25.(10分)已知直线的图象经过点和点(1)求的值;(2)求关于的方程的解(3)若、为直线上两点,且,试比较、的大小26.(10分)已知函数y=-x(x≤3)kx+b(x≥3)的图象经过第四象限的点B(3,a),且与x轴相交于原点和点A(7,(1)求k、b的值;(2)当x为何值时,y>﹣2;(3)点C是坐标轴上的点,如果△ABC恰好是以AB为腰的等腰三角形,直接写出满足条件的点C的坐标

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+2=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、B【解析】

先把点带入得,解得m=,再根据正比例函数的增减性判断m的值.【详解】因为的值随x值的增大而减小,所以m<0即m=-1.故选B.考点:曲线上的点与方程、正比例函数的性质.3、D【解析】

根据二次根式有意义的条件是被开方数大于等于0,即可求得答案.【详解】解:根据题意知,要使在实数范围内有意义.则,解得:,故选:D.【点睛】本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.4、B【解析】

根据反比例函数和一次函数的图像特点解答即可.【详解】∵k<0∴反比例函数的图像只能在二、四象限,故排除答案A,D又一次函数的解析式为:y=k(x+1)(k<0)∴一次函数的图像过二、三、四象限故答案选择B.【点睛】本题考查的是反比例函数和一次函数的图像特征,反比例函数y=kx,当k>0时,函数图像过一、三象限,当k<0时,函数图像过二、四象限;一次函数y=kx+b,当k>0,b>0时,函数图像过一、二、三象限,当k>0,b<0时,函数图像过一、三、四象限,当k<0,b>0时,函数图像过一、二、四象限,当k<0,b<05、B【解析】

解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.6、C【解析】

直接根据图像在x轴上方时所对应的x的取值范围进行解答即可.【详解】由图像可知,不等式的解集为:故答案选:C【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.7、D【解析】

根据多边形的外角和等于,用360除以一个多边形的每个外角的度数,求出这个多边形的边数是多少即可.【详解】解:,这个多边形的边数是1.故选:D.【点睛】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于.8、D【解析】

根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;

B、不是轴对称图形,是中心对称图形.故错误;

C、是轴对称图形,不是中心对称图形.故错误;

D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.10、C【解析】

直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、ab-a=a(b-1),能够分解因式,故此选项不合题意;

B、a2-9=(a+3)(a-3),能够分解因式,故此选项不合题意;

C、a2+2a+5,不能因式分解,故本选项符合题意;

D、4a2+4a+1=(2a+1)2,能够分解因式,故此选项不合题意;

故选:C.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.二、填空题(每小题3分,共24分)11、(,0);【解析】

如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,求出直线的解析式,即可解决问题.【详解】如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,设最小的解析式为,则有,解得,直线的解析式为,令,得到,.故答案为:.【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.12、(120+4x)(40+2x)=1【解析】

设上面留白部分的宽度为xcm,则左右空白部分为2x,根据题意得出方程,计算即可求出答案.【详解】设上面留白部分的宽度为xcm,则左右空白部分为2x,可列得方程为:(120+4x)(40+2x)=1.故答案为:(120+4x)(40+2x)=1.【点睛】此题考查由实际问题抽象出一元二次方程,正确表示出变化后的长与宽是解题关键.13、【解析】

根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.【详解】∵一元二次方程x2﹣3x+c=0有两个相等的实数根,∴△=(﹣3)2﹣4c=0,解得:c=,故答案为.【点睛】本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.14、【解析】

上下平移时只需让的值加减即可.【详解】原直线的,,向上平移3个单位长度得到了新直线,那么新直线的,,所以新直线的解析式为:.故答案为:.【点睛】考查了一次函数图象与几何变换,要注意求直线平移后的解析式时的值不变,只有发生变化.15、∠A=∠C(答案不唯一).【解析】

添加条件是∠A=∠C,根据相似三角形的判定(有两角对应相等的两三角形相似)证明即可.【详解】添加的条件是:∠A=∠C,理由是:∵∠A=∠C,∠DOC=∠BOA,∴△AOB∽△COD,故答案为:∠A=∠C.本题答案不唯一.16、2【解析】

将x=2代入函数解析式可得出y的值.【详解】由题意得:y=2×2−2=2.故答案为:2.【点睛】此题考查函数值,解题关键在于将x的值代入解析式.17、(1+x)(1﹣x).【解析】试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).18、1【解析】

根据算术平方根的定义解答即可.【详解】解:==1.故答案为:1.【点睛】此题主要考查了算术平方根的定义:如果一个数的平方等于A,那么这个数就叫做A的平方根,其中非负的平方根叫做这个数的算术平方根.三、解答题(共66分)19、(1)今年A款手机每部售价1元;(2)进A款手机20部,B款手机40部时,这批手机获利最大.【解析】

(1)设今年A款手机的每部售价x元,则去年售价每部为(x+400)元,由卖出的数量相同建立方程求出其解即可;

(2)设今年新进A款手机a部,则B款手机(60-a)部,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值【详解】解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,由题意,得,解得:x=1.经检验,x=1是原方程的根.答:今年A款手机每部售价1元;(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,由题意,得y=(1﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+2.∵B款手机的进货数量不超过A款手机数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+2.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款手机的数量为:60﹣20=40部.∴当新进A款手机20部,B款手机40部时,这批手机获利最大.【点睛】考查一次函数的应用,分式方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.20、(1)实际每年绿化面积为75万平方米;(2)平均每年绿化面积至少还要增加37.5万平方米.【解析】

(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米.根据“实际每年绿化面积是原计划的1.5倍,这样可提前3年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】解:(1)设原计划每年绿化面积为x万平方米,,解得x=50,经检验,x=50是此分式方程的解.∴1.5x=75.答:实际每年绿化面积为75万平方米.(2)设平均每年绿化面积至少还要增加a万平方米,75×3+2(75+a)≥450,解得a≥37.5.答:平均每年绿化面积至少还要增加37.5万平方米.【点睛】此题考查一元一次不等式的应用,分式方程的应用,解题关键在于列出方程21、(1),;(2).【解析】

(1)把点P的坐标分别代入l1与l2的函数关系式,解方程即可;(2)利用函数图象,写出直线在直线的上方所对应的自变量的范围即可.【详解】解:(1)因为点P是两条直线的交点,所以把点分别代入与中,得,,解得,.(2)当时,的图象在的上面,所以,不等式的解集是.【点睛】本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.22、(1);(2)1;(2)见解析;(4)y=-2.【解析】

(1)根据分母不为0即可得出关于x的一元一次不等式,解之即可得出结论;

(2)将x=2代入函数解析式中求出m值即可;

(2)连点成线即可画出函数图象;

(4)观察函数图象即可求解.【详解】解:(1)由题意得:x-1≠0,

解得:x≠1.

故答案为:x≠1;

(2)当x=时,m=-2=4-2=1,

即m的值为1;

(2)图象如图所示:

(4)根据画出的函数图象,发现下列特征:

该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线y=2越来越靠近而永不相交,

故答案为y=2.【点睛】本题考查了反比例函数图象上点的坐标特征,函数自变量的取值范围以及函数图象,连点成曲线画出函数图象是解题的关键.23、(1)40,1,2;(2)126;(3)见解析;(4)315人.【解析】

(1)根据统计图中的数据可以求得众数、中位数,(2)据统计图中的数据可以求得相应的圆心角的度数;(3)根据统计图中的数据,可以求得读一部的学生数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得看完3部以上(包含3部)的有多少人.【详解】解:(1)本次调查的学生有:10×25%=40(人),读一部的有:40-2-10-8-6=14(人),本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,(2)扇形统计图中“1部”所在扇形的圆心角为:,故答案为:.(3)补全的条形统计图如右图所示;(4))∵=315(人),∴看完3部以上(包含3部)的有315人.【点睛】本题考查条形统计图、扇形统计图、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.24、12m【解析】

根据题意得出在Rt△ABC中,BC=即可求得.【详解】如图所示:由题意可得,AB=5m,AC=13m,在Rt△ABC中,BC==12(m),答:这条缆绳在地面的固定点距离电线杆底部12m.【点睛】要考查了勾股定理的应用,根据题意得出△ABC是直角三角形是解题关键,再运用勾股定理求得BC的值.25、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论