版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀区101中学2024届八年级数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为()A.87 B.91 C.103 D.1112.已知直角三角形的两条直角边的长分别是1,,则斜边长为()A.1 B. C.2 D.33.化简的结果是()A.2 B.-2 C. D.44.下列等式从左边到右边的变形,是因式分解的是()A.(3﹣a)(3+a)=9﹣a2 B.x2﹣y2+1=(x+y)(x﹣y)+1C.a2+1=a(a+) D.m2﹣2mn+n2=(m﹣n)25.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()A.29人 B.30人 C.31人 D.32人6.如图,在中,,是的中点,,,若,,①四边形是平行四边形;②是等腰三角形;③四边形的周长是;④四边形的面积是1.则以上结论正确的是A.①②③ B.①②④ C.①③④ D.②④7.下列属于矩形具有而菱形不具有的性质是()A.两组对边分别平行且相等B.两组对角分别相等C.对角线相互平分D.四个角都相等8.平行四边形中,,则的度数是()A. B. C. D.9.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠ABC=75°,则∠EAF的度数为()A.60° B.65° C.70° D.75°10.下列图形中是中心对称图形,但不是轴对称图形的是(
).A.正方形 B.菱形 C.矩形 D.平行四边形二、填空题(每小题3分,共24分)11.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.12.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚,若梯子的顶端下滑,则梯足将滑动______.13.计算:(−)2=________;=_________.14.如图,利用函数图象可知方程组的解为______.15.分式的值为0,那么的值为_____.16.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是_____________.17.已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.18.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,若F是BC的中点,且∠EDF=45°,则BE的长为_______.三、解答题(共66分)19.(10分)“2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小明跑步的平均速度;(2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.20.(6分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.(1)求反比例函数和一次函数的函数表达式;(2)连接,求四边形的面积;(3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.21.(6分)如图,点、分别在、上,分别交、于点、,,.(1)求证:四边形是平行四边形;(2)已知,连接,若平分,求的长.22.(8分)今年水果大丰收,A,B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.23.(8分)某学校准备利用今年暑假将旧教学楼进行装修,并要在规定的时间内完成以保证秋季按时开学.现有甲、乙两个工程队,若甲工程队单独做正好可按期完成,但费用较高;若乙工程队单独做则要延期4天才能完成,但费用较低.学校经过预算,发现先由两队合作3天,再由乙队独做,正好可按期完成,且费用也比较合理.请你算一算,规定完成的时间是多少天?24.(8分)用纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页5102030甲复印店收费(元0.523乙复印店收费(元0.61.22.4(2)设在甲复印店复印收费元,在乙复印店复印收费元,分别写出,关于的函数关系式;(3)顾客如何选择复印店复印花费少?请说明理由.25.(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.26.(10分)如图,正比例函数y1=kx与-次函数y2=mx+n的图象交于点A(3,4),一次函数y2的图象与x轴,y轴分别交于点B,点C,且0A=OC.(1)求这两个函数的解析式;(2)求直线AB与两坐标轴所围成的三角形的面积.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.2、C【解析】
根据勾股定理进行计算,即可求得结果.【详解】解:直角三角形的两条直角边的长分别为1,,则斜边长==2;故选C.【点睛】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3、A【解析】
直接利用二次根式的性质化简得出答案.【详解】解:,故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4、D【解析】
利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出答案.【详解】A、(3﹣a)(3+a)=9﹣a2,是整式的乘法运算,故此选项错误;B、x2﹣y2+1=(x+y)(x﹣y)+1,不符合因式分解的定义,故此选项错误;C、a2+1=a(a+),不符合因式分解的定义,故此选项错误;D、m2﹣2mn+n2=(m﹣n)2,正确.故选:D.【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.5、B【解析】设这个敬老院的老人有x人,则有牛奶(4x+28)盒,根据关键语句“如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒”可得不等式组:,解得:29<x≤1.∵x为整数,∴x最少为2.故选B.6、A【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①,,,,,四边形是平行四边形,故①正确;②是的中点,,,是等腰三角形,故②正确;③,,,,四边形是平行四边形,,,,,,,四边形的周长是故③正确;④四边形的面积:,故④错误,故选.【点睛】此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.7、D【解析】
矩形具有的性质:①对角线互相平分,②四个角相等;菱形具有的性质:①对角线互相平分,②对角线互相垂直,②四条边相等;因此矩形具有而菱形不具有的性质是:四个角相等.【详解】.解:A、矩形和菱形的两组对边分别平行且相等,本选项不符合题意;B、矩形和菱形的两组对角分别相等,本选项不符合题意;C、矩形和菱形的对角线相互平分,本选项不符合题意;D、菱形的四条角不相等,本选项符合题意;故选:D.【点睛】本题考查了矩形和菱形的性质,做好本题的关键是熟练掌握性质即可.8、D【解析】
根据平行四边形的对角相等、相邻内角互补求解.【详解】∵平行四形ABCD∴∠B=∠D=180°−∠A∴∠B=∠D=80°∴∠B+∠D=160°故选:D.【点睛】本题考查的是利用平行四边形的性质,必须熟练掌握.9、D【解析】
先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.【详解】解:∵平行四边形ABCD中,∠ABC=75°,∴∠C=105°,又∵AE⊥BC于E,AF⊥CD于F,∴四边形AECF中,∠EAF=360°-180°-105°=75°,故选:D.【点睛】本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.10、D【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.正方形、菱形、矩形均既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,故选D.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.二、填空题(每小题3分,共24分)11、-1【解析】
先提取公因式ab,整理后再把a+b的值代入计算即可.【详解】解:a+b=5时,原式=ab(a+b)=5ab=-10,解得:ab=-1.故答案为:-1.【点睛】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键,也是难点.12、【解析】
根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO中,根据勾股定理可得,,如果梯子的顶度端下滑1米,则.在直角三角形中,根据勾股定理得到:,则梯子滑动的距离就是.故答案为:1m.【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.13、5π-1【解析】
根据二次根式的性质计算即可.【详解】解:.故答案为:5,π-1.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.14、【解析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;【详解】观察图象可知,y=2x与x+ky=3相交于点(1,2),可求出方方程组的解为,故答案为:【点睛】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.15、-1【解析】
根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.【详解】∵分式的值为0∴解得:x=1或x=-1又x-1≠0∴x=-1故答案为-1.【点睛】本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.16、21.【解析】已知这组数据共5个,且中位数为4,所以第三个数是4;又因这组数据的唯一众数是6,可得6应该是4后面的两个数字,而前两个数字都小于4,且都不相等,所以前两个数字最大的时候是3,2,即可得其和为21,所以这组数据可能的最大的和为21.故答案为:21.点睛:主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17、【解析】
连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【详解】解:如图,连接BD,∵∠C=90°,BC=6,CD=4,∴BD===2,∵E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD=×2=.故答案为:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.18、4【解析】
延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.【详解】解:延长F至G,使CG=AE,连接DG、EF,如图所示:∵四边形ABCD是正方形,∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,∴∠DCG=90°,在△ADE和△CDG中,AE=CG∠A=∠DCG=∴△ADE≌△CDG(SAS),∴DE=DG,∠ADE=∠CDG,∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,∵∠EDF=45°,∴∠GDF=45°,在△EDF和△GDF中,DE=DG∠EDF=∠GDF∴△EDF≌△GDF(SAS),∴EF=GF,∵F是BC的中点,∴BF=CF=3,设AE=CG=x,则EF=GF=CF+CG=3+x,在Rt△BEF中,由勾股定理得:32解得:x=2,即AE=2,∴BE=AB-AE=6-2=4.【点睛】此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.三、解答题(共66分)19、(1)小明跑步的平均速度为20米/分钟.(2)小明能在演唱会开始前赶到奥体中心.【解析】
(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小明骑车的时间比跑步的时间少用了5分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小明跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的4分钟即可求出小明赶回奥体中心所需时间,将其与30进行比较后即可得出结论.【详解】解:(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据题意得:-=5,解得:x=20,经检验,x=20是原分式方程的解.答:小明跑步的平均速度为20米/分钟.(2)小明跑步到家所需时间为300÷20=15(分钟),小明骑车所用时间为15-5=10(分钟),小明从开始跑步回家到赶回奥体中心所需时间为15+10+4=29(分钟),∵29<30,∴小明能在演唱会开始前赶到奥体中心.【点睛】本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.20、(1)反比例函数解析式为;一次函数解析式为;(2)1;(3)或.【解析】
(1)根据BM⊥轴,可知△BMO为等腰直角三角形,可求得点B的坐标,将其代入反比例函数,求出,即可知反比例函数解析式,已知点A的纵坐标,代入求得的反比例函数解析式,可求得点A的横坐标,再利用待定系数法,即可求得一次函数解析式;(2)一次函数与y轴交于点C,可求得C的坐标,易证四边形MBOC是平行四边形,OM即为高,四边形的面积即可求解;(3)要使反比例函数的值小于一次函数的值,反比例函数图像一定在一次函数图像的下方,观察图像,即可求解自变量的取值范围.【详解】解:(1)∵BM⊥轴,且BM=OM,∴△BMO为等腰直角三角形,∵OB=,∴BM=OM=2,∴点B的坐标为(-2,-2),∵点B在双曲线上,代入,可求得,故反比例函数的解析式为,∵点A也是反比例函数上的点,且A点的纵坐标为1,代入,求得A点坐标为(1,1),∵点A、B也是直线上的点,∴,解得.故一次函数的解析式为.(2)∵一次函数与轴交于点C,将代入解析式,可求得C点的坐标为(0,2)∴BM=OC,又∵BM//OC,∴四边形MBOC是平行四边形,OM即为平行四边形MBOC的高,∴四边形MBOC的面积,故四边形MBOC的面积为1.(3)根据图像观察可知,要使反比例函数的值小于一次函数的值时,反比例函数图像一定在一次函数图像的下方,包括A(1,1)的右侧,以及B(-2,-2)到轴这两部分,从而可知,自变量的取值范围是:或.故答案为:或.【点睛】本题目考查函数的综合,难度一般,涉及知识点有反比例函数、一次函数,待定系数法等,熟练掌握两种函数的性质是顺利解题的关键.21、(1)见解析;(2).【解析】
(1)先证得,再利用等量代换证得,证得,即可证明绪论;(2)利用角平分线的定义和平行线的定义可证得,可求得.【详解】(1)∵,∴,,又∵,∴,∴,∴四边形是平行四边形;(2)∵平分,∴,∵,∴,∴,∴,又∵,∴.【点睛】本题考查了平行四边形的判定和性质,角平分线的性质,平行线的性质,熟练掌握平行四边形的判定与性质是解本题的关键.22、(1)W=35x+11200,x的取值范围是80≤x≤380;(2)从A基地运往甲销售点的水果200件,运往乙销售点的水果180件,从B基地运往甲销售点的水果200件,运往乙销售点的水果120件.【解析】试题分析:(1)用x表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.试题解析:(1)依题意,列表得
A(380)
B(320)
甲(400)
x
400-x
乙(300)
380-x
320-(400-x)=x-80
∴W=40x+20×(380-x)+15×(400-x)+30×(x-80)=35x+11200又x-80≥0400-x≥0(2)依题意得35x+12200≤18300x≥200解得200≤x≤202因w=35x+10,k=35,w随x的增大而增大,所以x=200时,运费w最低,最低运费为81200元。此时运输方案如下:
A
B
甲
200
200
乙
180
120
考点:1、一次函数的应用;2、一元一次不等式组的应用.23、规定完成的日期为12天.【解析】
关键描述语为:“由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成”;本题的等量关系为:甲3天的工作量+乙规定日期的工作量=1,把相应数值代入即可求解.【详解】解:设规定日期为x天,则甲工程队单独完成要x天,乙工程队单独完成要(x+4)天,根据题意得:解之得:x=12,
经检验,x=12是原方程的解且符合题意.
答:规定完成的日期为12天.【点睛】此题考查分式方程的应用,根据工作量为1得到相应的等量关系是解决本题的关键;易错点是得到两人各自的工作时间.24、(1)1,3.3;(2);(3)当复印的页数大于60时,选择乙;小于60页时,选择甲;等于60页时,两家都可以,见解析【解析】
(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得;当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得,当一次复印页数超过20时,根据题意求得;(3)分三种情况分别计算自变量的取值,从而做出判断.【详解】解:(1)当时,甲复印店收费为:0.元,当时,乙复印店收费为:元;故答案为:1,3.3;(2);;(3)①当时,即:,解得:;②当时,即:,解得:;③当时,即:,解得:;因此,当时,乙的花费少,当时,甲、乙的花费相同,当时,甲的花
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轴承装配工安全知识竞赛能力考核试卷含答案
- 飞机外勤弹射救生工岗前健康知识考核试卷含答案
- 井下特种装备操作工成果转化模拟考核试卷含答案
- 2025年记忆绵家居制品合作协议书
- 学生综合实践活动请假条
- 2025年变频器柜体系统合作协议书
- 2025年节能、高效干燥设备项目合作计划书
- 中国古购物中心行业市场前景预测及投资价值评估分析报告
- 信息和信息技术
- 人力资源部工作总结和计划
- 门窗维修协议合同范本
- 子宫肌瘤课件超声
- 2025年异丙醇行业当前发展现状及增长策略研究报告
- 出租车顶灯设备管理办法
- DB11∕T 637-2024 房屋结构综合安全性鉴定标准
- 2025年新疆中考数学真题试卷及答案
- 2025届新疆乌鲁木齐市高三下学期三模英语试题(解析版)
- DB3210T1036-2019 补充耕地快速培肥技术规程
- 统编版语文三年级下册整本书阅读《中国古代寓言》推进课公开课一等奖创新教学设计
- 《顾客感知价值对绿色酒店消费意愿的影响实证研究-以三亚S酒店为例(附问卷)15000字(论文)》
- 劳动仲裁申请书电子版模板
评论
0/150
提交评论