浙江省台州市黄岩区黄岩实验中学2024年八年级下册数学期末教学质量检测试题含解析_第1页
浙江省台州市黄岩区黄岩实验中学2024年八年级下册数学期末教学质量检测试题含解析_第2页
浙江省台州市黄岩区黄岩实验中学2024年八年级下册数学期末教学质量检测试题含解析_第3页
浙江省台州市黄岩区黄岩实验中学2024年八年级下册数学期末教学质量检测试题含解析_第4页
浙江省台州市黄岩区黄岩实验中学2024年八年级下册数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省台州市黄岩区黄岩实验中学2024年八年级下册数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A.的长 B.的长 C.的长 D.的长2.关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③ B.②③ C.①④ D.②④3.若点A(3,y1),B(﹣2,y2)都在直线y=﹣x+n上,则y1与y2的大小关系是()A.y1<y2 B.y1>y2C.y1=y2 D.以上都有可能4.分式-x+y-x-y可变形为(A.-x+yx-y B.-x-yx+y C.x+y5.抛物线的顶点坐标是()A. B. C. D.6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图像经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三7.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)()A. B.C. D.8.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()A. B. C. D.9.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40 B.m的值为10C.n的值为20 D.表示“足球”的扇形的圆心角是70°10.下列下列算式中,正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.12.人体中红细胞的直径约为0.0000077m,数据0.0000077用科学记数法表示为________13.当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.14.某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.16.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是_________________米.17.在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.18.若A(﹣1,y1)、B(﹣1,y1)在y=1x图象上,则y1、y1大小关系是y1_____y1三、解答题(共66分)19.(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。(3)若点P是此平面直角坐标系内的一点,当点A、

B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。20.(6分)如图,已知直线AQ与x轴负半轴交于点A,与y轴正半轴交于点Q,∠QAO=45°,直线AQ在y轴上的截距为2,直线BE:y=-2x+8与直线AQ交于点P.(1)求直线AQ的解析式;(2)在y轴正半轴上取一点F,当四边形BPFO是梯形时,求点F的坐标.(3)若点C在y轴负半轴上,点M在直线PA上,点N在直线PB上,是否存在以Q、C、M、N为顶点的四边形是菱形,若存在请求出点C的坐标;若不存在请说明理由.21.(6分)如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.(1)求证:(BE+BF)2=2OB2;(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于(用含a的代数式表示)22.(8分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.23.(8分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在超市购物的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?24.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.25.(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.(1)请直接写出点A的坐标:______;(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.①求k的值;②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.26.(10分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:问题解决(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.2、C【解析】垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3、A【解析】

结合题意点A(3,y1),B(﹣1,y1)都在直线y=﹣x+n上,利用一次函数的增减性即可解决问题.【详解】∵直线y=﹣x+n,﹣<0,∴y随x的增大而减小,∵3>﹣1,∴y1<y1.故选:A.【点睛】本题考查一次函数图象上的点的特征,解题的关键是学会利用一次函数的增减性解决问题,属于中考常考题型.4、D【解析】

根据分式的基本性质进行判断.【详解】A.分子、分母同时除以−1,则原式=x-yx+yB.分子、分母同时除以−1,则原式=x-yx+yC.分子、分母同时除以−1,则原式=x-yx+yD.分子、分母同时除以−1,则原式=x-yx+y,故本选项正确故选:D.【点睛】此题考查分式的基本性质,解题关键在于掌握运算法则.5、D【解析】

当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.6、A【解析】试题分析:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图像经过二、三、四象限.故选A.考点:一次函数的性质.7、C【解析】

由题意结合函数图象的性质与实际意义,进行分析和判断.【详解】解:∵小刚在原地休息了6分钟,∴排除A,又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,∴排除B、D,只有C满足.故选:C.【点睛】本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.8、C【解析】

如图,根据菱形的性质可得,,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形,,,,面积为,①菱形的边长为,②,由①②两式可得:,,,即该菱形的两条对角线的长度之和为,故选C.【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.9、D【解析】分析:由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.详解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12÷30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1−40%−30%−10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.点睛:本题主要考查了条形统计图,扇形统计图,解题关键在于理解条形统计图和扇形统计图.10、B【解析】

根据二次根式的加减运算法则和二次根式的性质逐项计算化简进行判断.【详解】解:A项,与不是同类二次根式,不能合并,故本选项错误;B项,,正确;C项,,故本选项错误;D项,,故本选项错误;故选B.【点睛】本题考查了二次根式的性质和加减运算,正确的进行二次根式的化简和根据加减运算法则进行计算是解题的关键.二、填空题(每小题3分,共24分)11、x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.12、【解析】

根据科学记数法的一般形式进行解答即可.【详解】解:0.0000077=.故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、-2【解析】

∵函数y=-(m-2)+(m-4)是一次函数,∴,∴m=-2.故答案为-214、1【解析】

根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.【详解】解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为1时,根据题意得(1+1+x+8)÷4=1,解得x=12,将这组数据从小到大的顺序排列8,1,1,12,处于中间位置的是1,1,所以这组数据的中位数是(1+1)÷2=1.故答案为1【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.15、1【解析】

根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.【详解】面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.故答案为:1.【点睛】本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.16、1.【解析】

在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:设旗杆高度为x,则,解得x=1.故答案为:1.【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.17、是轴对称图形;对角线相等;有一组对边相等;有一组对边平行.【解析】

根据C形的定义,利用研究平行四边形及特殊四边形的方法,从边、角、对角线以及对称性这几个方面分析即可.【详解】根据C形的定义,称C形中一条边上相等的邻角为C形的底角,这条边叫做C形的底边,夹在两底边间的边叫做C形的腰.则C形的性质如下:C形的两底边平行;C形的两腰相等;C形中同一底上的两个底角相等;C形的对角互补;C形的两条对角线相等;C形是轴对称图形.故答案为:C形的两底边平行;C形的两腰相等;C形中同一底上的两个底角相等;C形的对角互补;C形的两条对角线相等;C形是轴对称图形【点睛】本题考查了平行四边形性质的应用,学生的阅读理解能力与知识的迁移能力,掌握研究平行四边形及特殊四边形的方法,并且能够灵活运用是解题的关键.18、>【解析】

根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.【详解】∵y=1x图象在一、三象限,在每个象限内y随xA(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,∵﹣1<﹣1,∴y1>y1,故答案为:>.【点睛】考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)(3)P点坐标为(−4,1)、(4,1)、(0,−5).【解析】

(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.【详解】(1)如图,线段A′B′为所作;(2)如图,线段A″B″为所作;(3)P点坐标为(−4,1)、(4,1)、(0,−5).【点睛】此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.20、(1)直线AQ的解析式为y=x+2;(2)F(0,4);(3)存在,C(0,)或C(0,-10)【解析】

(1)利用待定系数法即可求出直线AQ的解析式;(2)先求出直线AQ和直线BE的交点P的坐标,由PF∥x轴可知F横坐标为0,纵坐标与点P的纵坐标相等;(3)分CQ为菱形的对角线与CQ是菱形的一条边两种情况讨论.【详解】解:(1)设直线AQ的解析式为y=kx+b,∵直线AQ在y轴上的截距为2,∴b=2,∴直线AQ的解析式为y=kx+2,∴OQ=2,在Rt△AOQ中,∠OAQ=45°,∴OA=OQ=2,∴A(-2,0),∴-2k+2=0,∴k=1,∴直线AQ的解析式为y=x+2;(2)由(1)知,直线AQ的解析式为y=x+2①,∵直线BE:y=-2x+8②,联立①②解得,∴P(2,4),∵四边形BPFO是梯形,∴PF∥x轴,∴F(0,4);(3)设C(0,c),∵以Q、C、M、N为顶点的四边形是菱形,①当CQ是对角线时,CQ与MN互相垂直平分,设C(0,c),∵CQ的中点坐标为(0,),∴点M,N的纵坐标都是,∴M(,),N(,),∴+=0,∴c=-10,∴C(0,-10),②当CQ为边时,CQ∥MN,CQ=MN=QM,设M(m,m+2),∴N(m,-2m+8),∴|3m-6|=2-c=|m|,∴m=或m=,∴c=或c=(舍),∴,∴(0,)或C(0,-10).【点睛】本题是一道一次函数与四边形的综合题,难度较大.21、(1)证明见解析;(1).【解析】

(1)由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得结论;(1)由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的,即可求解.【详解】解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°.∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.在△AOE和△BOF中,∴△AOE≌△BOF(ASA),∴AE=BF,∴BE+EF=BE+AE=AB在Rt△AOB中,AB1=OA1+OB1,且OA=OB,∴(BE+BF)1=1OB1,(1)∵△AOE≌△BOF,∴S△AOE=S△BOF,∴重叠部分的面积=S△AOB=S正方形ABCD=a1.故答案为:a1.【点睛】本题考查了正方形的性质和全等三角形的判定和性质,掌握全等三角形的判定是解题的关键.22、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1)连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)∵抛物线过点A(1,0)和B(1,0)(2)∵∴点C为线段DE中点设点E(a,b)∵0<m<1,∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E纵坐标的范围为(1)连结BD,过点D作x轴的垂线交BC于点H∵CE=CD∴H(m,-m+1)∴当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.23、(1)15,;(2)s=t;(2)2千米【解析】

(1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;(2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;(2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.【详解】解:(1)20﹣15=15(分钟);4÷(45﹣20)=(千米/分钟).故答案为:15;.(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,将(0,0)、(45,4)代入s=mt+n中,,解得:,∴s=t.∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.(2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,,解得:,∴s=﹣t+1.令s=t=﹣t+1,解得:t=,∴s=t=×=2.答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.【点睛】本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.24、(1)见解析;(2)见解析;(3)P(﹣1,2)【解析】

(1)分别作出A,B,C的对应点A1,B1,(2)分别求出A,B,C的对应点A2,B2,(3)利用旋转对称图形得出对应点的连线的交点进而得出答案..【详解】解:(1)如图所示,△A1(2)如图所示,△A2(3)P(-1,2).理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,∴P点是B1B2的中点,又∵B1B2的坐标为(4,2)、(-6,2),∴P坐标为(-1,2).【点睛】本题考查作图-旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.25、(1)(0,1);(2)①k=;②N(-3,);③直线

l2的解析式为y=x+1.【解析】

(1)令,求出相应的y值,即可得到A的坐标;(2)①先设出P的坐标,然后通过点的平移规律得出平移后的坐标,然后将代入中即可求出k的值;②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形,设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.【详解】(1)∵y=kx+1与y轴交于点A,令,,∴A(0,1).(2)①由题意得:P(m,km+1),∵将点P向左平移3个单位,再向下平移1个单位,得点P′,∴P′(m-3,km),∵P′(m-3,km)在射线AB上,∴k(m-3)+1=km,解得:k=.②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.,,当时,,解得,∴.设M(0,t),则AM=BM=1-t,在Rt△BOM中,OB2+OM2=BM2,即32+t2=(1-t)2,解得:t=,∴M(0,),∴OM=,BN=AM=1-=,∴N(-3,).③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,∵∠BAC=15°,∴△ABC是等腰直角三角形,∴AB=BC,∠ABO+∠CBD=90°,又∵∠ABO+∠BAO=90°,∴∠BAO=∠CBD,在和中,∴△AOB≌△BDC(AAS),∴AO=BD=1,OB=DC=3,∴OD=OB+BD=3+1=7,∴C(-7,3),设直线l2的解析式为:y=ax+1,则-7a+1=3,解得:a=.∴直线l2的解析式为:y=x+1.【点睛】本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论