专题 勾股定理与赵爽弦图问题( 基础题&提升题&压轴题 )(原卷版)_第1页
专题 勾股定理与赵爽弦图问题( 基础题&提升题&压轴题 )(原卷版)_第2页
专题 勾股定理与赵爽弦图问题( 基础题&提升题&压轴题 )(原卷版)_第3页
专题 勾股定理与赵爽弦图问题( 基础题&提升题&压轴题 )(原卷版)_第4页
专题 勾股定理与赵爽弦图问题( 基础题&提升题&压轴题 )(原卷版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级下册数学《第十七章勾股定理》专题勾股定理与赵爽弦图问题(基础题&提升题&压轴题)基础题基础题1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,a<b,斜边是c,证明勾股定理的过程中用到的等式是()A.a(b﹣a)=ab﹣a2 B.(a+b)(b﹣a)=b2﹣a2 C.(b﹣a)2+4×12ab=c2 D.(a+b)2=a2+2ab+2.(2022秋•朝阳区校级期末)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=3,弦c=5,则小正方形ABCD的面积是()A.1 B.2 C.3 D.43.(2021秋•温州期中)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个直角三角形,当EF=7,DE=12时,则正方形ABCD的边长是()A.13 B.28 C.48 D.524.(2022秋•衡东县期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=24,大正方形的面积为129.则小正方形的边长为()A.12 B.11 C.10 D.95.(2022春•青秀区校级期末)如图所示的图形表示勾股定理的一种证明方法,该方法运用了祖冲之的出入相补原理.若图中空白部分的面积是14,整个图形(连同空白部分)的面积是36,则大正方形ABCD的边长是.6.(2022秋•阳城县期末)如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是.7.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是由八个全等的直角三角形拼接而成,若图中正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.8.(2022秋•西安月考)如图,这是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=2022,则S2的值是()A.672 B.673 C.674 D.6759.“赵爽弦图”巧妙地利用面积关系证明了勾股定理.在如图所示的“赵爽弦图”中,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD,EFGH都是正方形.若AB=10,EF=2,则AH的长为()A.62 B.82 C.6 D.10.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.49 B.51 C.76 D.9611.(2022春•思明区校级期中)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①x2+y2=49;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①② B.②④ C.①②③ D.①③12.(2021秋•金台区校级月考)四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图),大正方形的面积为13,小正方形的面积为1,则组成弦图的每个小直角三角形的两个直角边和为()A.5 B.7 C.25 D.313.(2021春•忠县期末)本期,我们学习了用赵爽弦图证明勾股定理.在如图所示的赵爽弦图中,在DH上取点M使得DM=GH,连接AM、CM.若正方形EFGH的面积为6,则△ADM与△CDM的面积之差为()A.3 B.2 C.3 D.不确定14.(2022秋•台江区校级期末)在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.将Rt△ABC绕点O依次旋转90°、180°和270°,构成的图形如图1所示.该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.(1)请利用这个图形证明勾股定理;(2)图2所示的徽标,是我国古代弦图的变形,该图是由其中的一个Rt△ABC绕中心点O顺时针连续旋转3次,每次旋转90°得到的,如果中间小正方形的面积为1cm2,这个图形的总面积为113cm2,AD=2cm,则徽标的外围周长为cm.15.(2022秋•屯留区期末)阅读与思考阅读下列材料,完成后面的任务:赵爽“弦圈”与完全平方公式三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明.实际上,该“弦图”与完全平方公式有着密切的关系,如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.由图可知,1个大正方形ABCD的面积=8个直角三角形的面积+1个小正方形PQMN的面积.任务:(1)在图2中,正方形ABCD的面积可表示为,正方形PQMN的面积可表示为.(用含a,b的式子表示)(2)根据S正方形ABCD=8S直角三角形+S正方形PQMN,可得(a+b)2,ab,(a﹣b)2之间的关系为.(3)根据(2)中的等量关系,解决问题:已知a+b=5,ab=4,求(a﹣b)2的值.提升题提升题1.(2022春•包河区期末)如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺成的大正方形,若勾为3,弦为5,则图中四边形ABCD的周长为.2.(2022秋•万州区校级期末)如图所示的图案是我国汉代数学家赵爽在注解《周髀算经》中“赵爽弦图”经修饰后的图形,四边形ABCD与四边形EFGH均为正方形,点H是DE的中点,阴影部分的面积为60,则AD的长为.3.(2022春•安庆期末)代数学家赵爽为了证明勾股定理,构造了一副“弦图”,后人称其为“赵爽弦图”.如图,大正方形ABCD由四个全等的直角三角形和一个小正方形组成,若∠ADE=∠AED,AD=45,则△ADE的面积为()A.24 B.6 C.25 D.2104.(2022•大悟县校级开学)如图一所示,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图(2)所示的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nmA.3-1 B.3-12 C.5-15.(2022•宜城市一模)如图,我国古代数学家得出的“赵爽弦图”,是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,直角三角形的较长边为b,较短边为a.若小正方形与大正方形的面积之比为1:13,则a:b=()A.2:5 B.3:5 C.2:3 D.1:36.(2022春•高邮市期末)赵爽的“弦图”被誉为“中国数学界的图腾”,它是由四个直角三角形与中间的小正方形拼成的一个大正方形.如图为“弦图”的一部分,正方形ABCD的边长为13,点M、N是正方形ABCD内的两点,且AM=CN=12,BM=DN=5,则MN的长为.7.如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S正方形ABCD=21,则图中阴影部分的面积之和为()A.214 B.215 C.225 8.(2022•瑞安市校级开学)如图,为四个全等的直角三角形拼成的“赵爽弦图”.连接AC,HF相交于点O,BG与AC相交于点J.若OF=FJ,已知S△BJC=2,则正方形ABCD的面积为()A.42+8 B.14 C.65 D.109.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在弦图中(如图2)连结AF,DE,并延长DE交AF于点K,连结KG.若AH=2DH=22,则KGA.2 B.322 C.5 D10.(2022春•济宁月考)综合与实践.勾股定理是几何学中的明珠,充满着魅力,千百年来,人们对它的证明颇感兴趣,其中有著名的数学家,也有业余数学爱好者.(1)我国汉代数学家赵爽创制了一幅如图1所示的用4个全等的直角三角形拼成的“弦图”,后人称之为“赵爽弦图”.在Rt△ABC中,∠ACB=90°,若AC=b,BC=a,AB=c,请你利用这个图形说明a2+b2=c2.(2)业余数学爱好者向常春在1994年构造发现了一个新的证法:把两个全等的Rt△ABC和Rt△DAE按如图2所示的方式放置,∠DAB=∠B=90°,AB=AD=c,BC=AE=a,AC=DE=b.请你利用这个图形说明c2+a2=b2.(提示:连接EC,CD)11.兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2).解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b).【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【应用】(2)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.12.(2022秋•扬州期中)著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,且CH⊥AB.测得CH=1.2千米,HB=0.9千米,求新路CH比原路CA少多少千米?(3)在第(2)问中若AB≠AC时,CH⊥AB,AC=4,BC=5,AB=6,设AH=x,求x的值.压轴题压轴题1.(2022春•瑞安市期中)2002年北京国际数学家大会的会徽是一个“弦图”(如图1).图2中,点P和点Q分别是线段AE和CG上的中点,连结DP,BP,DQ,BQ,则构成了一个“压扁”的弦图四边形BQDP,若记△DHQ和△BQG的面积分别为S1,S2,且S1S2=32,正方形A.12.5 B.15 C.17.5 D.202.(2023•桐乡市校级开学)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》题时给出了“赵爽弦图”.将两个“赵爽弦图”(如图1)中的两个正方形和八个直角三角形按图2方式摆放围成正方形MNPQ,记空隙处正方形ABCD,正方形EFGH的面积分别为S1,S2(S1>S2),则下列四个判断:①S1+S2=14S四边形MNPQ;②DG=2AF;③若∠EMH=30°,则S1=3S2;④若点A是线段GF的中点,则3S1=4SA.②③④ B.①③④ C.①②④ D.①②③3.(2022秋•温州期末)如图,大正方形ABCD由四个全等的直角三角形和一个小正方形拼接而成.点E为小正方形的顶点,延长CE交AD于点F,连结BF交小正方形的一边于点G,若△BCF为等腰三角形,AG=5,则小正方形的面积为()A.15 B.16 C.20 D.254.(2021秋•西湖区校级期中)如图,四个全等的直角三角形与中间的小正方形EFGH拼成了一个大正方形ABCD,连结AC,交BE于点P,若正方形ABCD的面积为28,AE+BE=7.则S△CFP﹣S△AEP的值是()A.3.5 B.4.5 C.5 D.5.55.(2022秋•霞浦县期中)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形(如图1)与中间的一个小正方形拼成一个大正方形(如图2).(1)利用图2正方形面积的等量关系得出直角三角形勾股的定理,该定理的结论用字母表示:;(2)用图1这样的两个直角三角形构造图3的图形,满足AE=BC=a,DE=AC=b,AD=AB=c,∠AED=∠ACB=90°,求证(1)中的定理结论;(3)如图,由四个全等的直角三角形拼成的图形,设CE=m,HG=n,求正方形BDFA的面积.(用m,n表示)6.为了突出勾股定理的价值,教科书上设计了大量的探究、验证活动,其中用“面积法”探究勾股定理的例子枚不胜举.受“面积法”启发,小明认为,利用赵爽弦图的一部分就可以证明勾股定理.(1)请把下面的证明过程补充完整;已知:将两个全等的直角三角形按图1所示拼在一起,其中∠ACB=∠BED=90°,AB=BD=c,AC=BE=b,BC=ED=a,求证:a2+b2=c2.证明:连接AD,过点A作AF⊥ED交DE的延长线于点F,则AF=b﹣a.(2)应用:如图2,已知等腰直角三角形纸片ABC,∠C=90°,AC=BC,AB=2+1.点D,E分别在边AC,AB上,将△ABC沿DE所在直线折叠,使点A的对应点A'正好落在边BC上.若△A'BE为直角三角形,请直接写出7.(2022•南京模拟)阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示的“弦图”,后人称之为“赵爽弦图”(边长为c的大正方形中放四个全等的直角三角形,两直角边长分别为a,b,斜边长为c).(1)请根据“赵爽弦图”写出勾股定理的推理过程;探索研究:(2)小亮将“弦图”中的2个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;问题解决:(3)如图2,若a=6,b=8,此时空白部分的面积为;(4)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.8.(2022秋•苏州期中)我国三国时期的数学家赵爽利用四个全等的直角三角形拼成如图1的“弦图”(史称“赵爽弦图”).(1)弦图中包含了一大一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图1,试验证勾股定理;(2)如图2,将四个全等的直角三角形紧密地拼接,形成“勾股风车”,已知外围轮廓(粗线)的周长为24,OC=3,求该“勾股风车”图案的面积;(3)如图3,将八个全等的直角三角形(外围四个和内部四个)紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+2S2+S3=20,则S2=.9.(2021春•交城县期中)勾股定理被誉为“千古第一定理”,长期以来人们对它进行了大量的研究,找到了数百种不同的验证方法,这些方法不但验证了勾股定理,而且丰富了研究数学问题的方法和手段,促进了数学的发展.某数学兴趣小组受“赵爽弦图”的启发,对勾股定理的验证进行了如下探究:实践操作他们裁剪出若干张大小,形状完全相同的直角三角形纸片,三边长分别记为a,b,c,如图(1)所示.之后分别用4张直角三角形纸片拼成如图(2)(3)(4)所示的形状,通过观察推理,验证了勾股定理.定理验证(1)观察图(2)和图(3)可以发现:①它们整体上都是边长为的正方形;②阴影部分的面积都是由4个完全相同的直角三角形组成,所以阴影的面积为;③图(2)中空白部分面积用不同的方法表示可得关系式;图(3)中空白部分面积用不同的方法表示可得关系式;④从而得到a2+b2=c2.(2)兴趣小组的同学通过观察图(4)中正方形的个数,以及它们之间的关系,验证了勾股定理,即a2+b2=c2.请你帮他们写出推理验证的完整过程.创新构图(3)一个直立的火柴盒在平面上倒下,启迪人们发现了一种新的证明勾股定理的方法.如图(5)同样是用4个完全角三角形证明勾股定理.10.(2021春•市南区期中)【知识总结】几何学为人们当今的科学发展做出了杰出的贡献,中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五”.这句话的意思是:“如果直角三角形两直角边长为3和4时,那么斜边的长为5”.上述记载表明了:在Rt△ABC中,如果∠C=90°,BC=a,AC=b,AB=c,那么a,b,c三者之间的数量关系是:a2+b2=c2.用四个全等的直角三角形拼成如图①所示的大正方形,中间也是一个正方形.它是美丽的“赵爽弦图”.其中四个直角三角形的直角边长分别为a,b(a<b),斜边长为c.【温故知新】(1)如图①,求证:a2+b2=c2;【问题解决】(2)如图②,将这四个全等的直角三角形无缝隙无重叠地拼接在一起,得到图形ABCDEFGH.若该图形的周长为48,OH=6.求该图形的面积;(3)如图③,将八个全等的直角三角形紧密地拼接成正方形PQMN,记正方形PQMN、正方形ABCD、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论