江苏省苏州市工业园区星湾中学2024届数学八年级下册期末教学质量检测试题含解析_第1页
江苏省苏州市工业园区星湾中学2024届数学八年级下册期末教学质量检测试题含解析_第2页
江苏省苏州市工业园区星湾中学2024届数学八年级下册期末教学质量检测试题含解析_第3页
江苏省苏州市工业园区星湾中学2024届数学八年级下册期末教学质量检测试题含解析_第4页
江苏省苏州市工业园区星湾中学2024届数学八年级下册期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市工业园区星湾中学2024届数学八年级下册期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列说法中,正确的是()A.有两边相等的平行四边形是菱形B.两条对角线互相垂直平分的四边形是菱形C.两条对角线相等且互相平分的四边形是菱形D.四个角相等的四边形是菱形2.下列说法正确的是()A.对角线互相垂直的四边形是菱形 B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形 D.对角线相等的菱形是正方形3.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14 B.13 C.14 D.144.下列说法中正确的是()A.有一组对边平行的四边形是平行四边形 B.对角线互相垂直的四边形是菱形C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形5.将直线向下平移2个单位,得到直线()A. B. C. D.6.下列计算结果,正确的是()A. B. C. D.7.下列方程没有实数根的是()A.x3+2=0 B.x2+2x+2=0C.=x﹣1 D.=08.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有()A.1个 B.2个 C.3个 D.4个9.下列说法正确的是()A.的相反数是 B.2是4的平方根C.是无理数 D.计算:10.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.5011.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1) C.x-1=x(1-) D.(x-1)2=x2-2x+112.如图,要测量被池塘隔开的A、C两点间的距离,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得EF两点间距离等于23米,则A、C两点间的距离为()米A.23 B.46 C.50 D.2二、填空题(每题4分,共24分)13.一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)14.如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.15.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.16.若三角形的一边长为,面积为,则这条边上的高为______.17.如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.18.分解因式:=______.三、解答题(共78分)19.(8分)(1)计算并观察下列各式:第个:;第个:;第个:;······这些等式反映出多项式乘法的某种运算规律.(2)猜想:若为大于的正整数,则;(3)利用(2)的猜想计算;(4)拓广与应用.20.(8分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.(2)归纳证明证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.21.(8分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.(1)求这两年我县投入城市公园建设经费的年平均增长率;(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?22.(10分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.23.(10分)解方程:(1)(2)24.(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值25.(12分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?26.已知一次函数,当时,,求它的解析式以及该直线与坐标轴的交点坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】

利用菱形的判定定理及性质即可求解.【详解】解:A.有两边相等的平行四边形不是菱形,此选项错误;B.两条对角线互相垂直平分的四边形是菱形,此选项正确;C.两条对角线相等且互相平分的四边形是矩形,此选项错误;D.四个角相等的四边形是矩形,此选项错误.故选:B.【点睛】本题考查的知识点是菱形的判定定理、平行四边形的性质、线段垂直平分线的性质,掌握菱形的判定定理是解此题的关键.2、D【解析】

利用菱形的判定、平行四边形的判定、正方形的判定及矩形的性质逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项错误,B.矩形的对角线一定相等,但不一定垂直,故该选项错误,C.一组对边平行且相等的四边形是平行四边形,故该选项错误,D.对角线相等的菱形是正方形,正确,故选D.【点睛】此题主要考查了菱形的判定、正方形的判定、平行四边形的判定及矩形的性质等知识,对角线互相垂直的平行四边形是菱形以及四条边相等的四边形是菱形;一组对边平行且相等的四边形是平行四边形;对角线相等的菱形是正方形;熟练掌握相关判定方法及性质是解题关键.3、D【解析】

24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF=.故选D.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.4、C【解析】

运用正方形的判定,菱形的判定,平行四边形的性质和判定可求解.【详解】解:A、有一组对边平行的四边形不一定是平行四边形(如梯形),故该选项错误;B、对角线互相垂直的四边形不一定是菱形(如梯形的对角线也可能垂直),故该选项错误;C、有一组邻边相等的平行四边形是菱形,故该选项正确;D、对角线互相垂直平分的四边形不一定是正方形(如菱形),故该选项错误;故选:C.【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质和判定,灵活运用这些判定定理是解决本题的关键.5、A【解析】

根据一次函数图象的平移规律即可得.【详解】由一次函数图象的平移规律得:向下平移得到的直线为即故选:A.【点睛】本题考查了一次函数图象的平移规律,掌握图象的平移规律是解题关键.6、C【解析】

按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.【详解】A.与不是同类二次根式,不能合并,故此选项错误;B.,故此选项错误;C.,正确;D.不能化简了,故此选项错误.故选:C.【点睛】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.7、B【解析】

根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.【详解】A、x3+2=0,x3=﹣2,x=﹣,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C、=x﹣1,两边平方得:x2﹣3=(x﹣1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、=0,去分母得:x﹣2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选B.【点睛】本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.8、C【解析】

根据正方形的四条边都相等,对角线互相垂直平分且每一条对角线平分一组对角的性质,再加上各选项的条件,对各选项分析判断后即可得出正确选项的个数【详解】解:如图,连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,AO=CO,BO=DO,①在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=BF,∵AC⊥BD,∴OE=OF,所以四边形BEDF是菱形,故①选项正确;②在正方形ABCD中,AC=BD,∴OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②选项正确;③AB=AF,不能推出四边形BEDF其它边的关系,故不能判定是菱形,本选项错误;④BE=BF,同①的后半部分证明,故④选项正确.所以①②④共3个可以判定四边形BEDF是菱形.故选:C.【点睛】本题主要考查菱形的判定定理,还综合考查了正方形的性质、全等三角形的判定和性质等,熟练掌握菱形的判定定理是解题的关键.9、B【解析】

根据只有符号不同的两个数互为相反数;开方运算,可得答案.【详解】A.只有符号不同的两个数互为相反数,故A正确;B.

2是4的平方根,故B正确;C.=3是有理数,故C错误;D.

=3≠-3,故D错误;故选B.【点睛】本题考查了相反数,平方根,立方根的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.10、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.11、B【解析】

根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.12、B【解析】

先判断出EF是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2EF.【详解】解:∵点E、F分别是BA和BC的中点,∴EF是△ABC的中位线,∴AC=2EF=2×23=46米.故选:B.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.二、填空题(每题4分,共24分)13、3x.【解析】

根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.【详解】∵从盒中随机取出一枚为黑棋的概率是,∴,整理,得:y=3x,故答案为:3x.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、1【解析】分析:连接DE并延长交AB于H,证明△DCE≌△HAE,根据全等三角形的性质可得DE=HE,DC=AH,则EF是△DHB的中位线,再根据中位线的性质可得答案.详解:连接DE并延长交AB于H.∵CD∥AB,∴∠C=∠A,∵E是AC中点,∴DE=EH,在△DCE和△HAE中,∠C=∠A,CE=AE,∠CED=∠AEH,∴△DCE≌△HAE(ASA),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB-AH=AB-DC=2,∴EF=1.点睛:此题主要考查了全等三角形的判定与性质,以及三角形中位线性质,关键是正确画出辅助线,证明△DCE≌△HAE.15、1【解析】

根据平行四边形的性质,三角形周长的定义即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=1,故答案为1.点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、4【解析】

利用面积公式列出关系式,将已知面积与边长代入即可求出高.【详解】解:根据题意得:÷×2=4.【点睛】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.17、2【解析】

在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。【详解】解:在中,,由题意设,∵,∴,∴,∴,∴,∴,故答案为2.【点睛】本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.18、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.三、解答题(共78分)19、(1)、、;(2);(3);(4)【解析】

(1)根据多项式乘多项式的乘法计算可得;

(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;

(3)将原式变形为,再利用所得规律计算可得;

(4)将原式变形为,再利用所得规律计算可得.【详解】(1)第1个:;

第2个:;

第3个:;

故答案为:、、;(2)若n为大于1的正整数,则,

故答案为:;

(3),

故答案为:;

(4),

故答案为:.【点睛】本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.20、(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【解析】

(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.

(2)证明过程同(1).

(3)由AB=5即△ABC为等边三角形可求得BD的长.连接CE,由(2)可求∠BCE=90°,故在Rt△BCE中,由勾股定理可求CE的长.又由(2)可得BP=CE,由DP=BP-BD即求得DP的长.【详解】解:(1)∵菱形ABCD中,∠ABC=60°

∴AB=BC=CD=AD,∠ADC=∠ABC=60°

∴△ABC、△ACD是等边三角形

∴AB=AC,AC=CD,∠BAC=∠ACD=60°

∵△APE是等边三角形

∴AP=AE,∠PAE=60°

∴∠BAC-∠PAC=∠PAE-∠PAC

即∠BAP=∠CAE

在△BAP与△CAE中

∴△BAP≌△CAE(SAS)

∴BP=CE,∠ABP=∠ACE

∵BD平分∠ABC

∴∠ACE=∠ABP=∠ABC=30°

∴CE平分∠ACD

∴CE⊥AD

故答案为:BP=CE,CE⊥AD;(2)(1)中的结论仍成立,证明如下:设AD与CE交于点O∵四边形ABCD为菱形,且∠ABC=60°∴△ABC为等边三角形.∴AB=AC,∠BAC=60°∴∠BAP=∠CAE又∵ΔAPE为等边三角形∴AP=AE在△BAP与△CAE中∴△BAP≌ΔCAE(SAS)∴BP=CE∴∠ACE=∠ABP=30°又∵∠CAD=60°∠A0C=90°∴AD⊥CE;(3)连接CE,设AC与BD相交于点O

∵AB=5

∴BC=AC=AB=5

∴AO=AC=∴BO===

∴BD=2BO=5

∵∠BCE=∠BCA+∠ACE=90°,BE=13

∴CE===12

由(2)可知,BP=CE=12

∴DP=BP-BD=12-5故答案为:(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【点睛】本题考查菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.21、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.【解析】

(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.【详解】(1)设这两年我县投入城市公园建设经费的年平均增长率为x,2(1+x)2=2.88,解得,x1=0.2,x2=﹣2.2(舍去),答:这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2.88(1+0.2)=3.456(亿元),答:2019年我县城市公园建设经费约为3.456亿元.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n

=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.22、(1)证明见解析;(2)成立,证明见解析.【解析】

解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF∴OE=OF(2)OE=OF成立∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA又∵AM⊥BE,∴∠F+∠MBF=90°=∠E+∠OBE又∵∠MBF=∠OBE∴∠F=∠E∴Rt△BOE≌Rt△AOF∴OE=OF23、(1),;(2),.【解析】

(1)先移项,然后根据两边同时开方进行计算;(2)用十字相乘直接计算即可;【详解】解:(1),,即或,,;(2),或,,.【点睛】本题主要考查一元二次方程的求解,熟练掌握十字相乘和直接开方法是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论