版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市郑东新区美秀初级中学2024年数学八年级下册期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.计算的结果是()A.3 B.﹣3 C.9 D.﹣92.六边形的内角和是()A.540°B.720°C.900°D.360°3.如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为()A. B.5 C. D.4.在方差公式中,下列说法不正确的是()A.n是样本的容量 B.是样本个体 C.是样本平均数 D.S是样本方差5.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.5 B.3 C.2.4 D.2.56.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(
)A.9分B.8分C.7分D.6分7.将分式方程去分母,得到正确的整式方程是()A. B. C. D.8.菱形ABCD中,∠A=60°,周长是16,则菱形的面积是().A.16 B.16 C.16 D.89.在下列各式中,(1),(2)x2y-3xy2,(3),(4),是分式的有()A.(1).(2) B.(1).(3) C.(1).(4) D.(3).(4)10.如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为().A. B. C.16 D.二、填空题(每小题3分,共24分)11.在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=_____.12.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=105cm,且ECFC=13.如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:(1)k的值为______;(1)当x满足______时,y1>y1.14.如果正数m的平方根为x+1和x-3,则m的值是_____15.如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.16.计算:12-17.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是________.18.如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.三、解答题(共66分)19.(10分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.20.(6分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.(1)请填写下表:(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:平均数方差中位数命中9环以上的次数(包括9环)甲71.21乙5.47.5(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)21.(6分)计算下列各题:(1)(2)22.(8分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求m和b的数量关系;(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.23.(8分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。(1)求证:四边形ADEF为矩形;(2)若∠C=30°、AF=2,写出矩形ADEF的周长。24.(8分)如图,已知线段a,b,∠α(如图).(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)25.(10分)已知:如图所示,菱形中,于点,且为的中点,已知,求菱形的周长和面积.26.(10分)计算:(1);(2);(3)先化简再求值,其中,.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据公式进一步加以计算即可.【详解】,故选:A.【点睛】本题主要考查了二次根式的计算,熟练掌握相关公式是解题关键.2、B【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.3、C【解析】
如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.【详解】如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,∵AE=1,CF=2,∴DE=4,DF=3,∴EF==5,∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,∴•5•BG=25-•5•1-•5•2-•3•4,∴BG=,故选C.【点睛】本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.4、D【解析】
根据方差公式中各个量的含义直接得到答案.【详解】A,B,C都正确;是样本方差,故D选项错误.故选D.5、A【解析】
根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【详解】如图,连接EC,∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8−AE)2,解得:AE=5,故选A.【点睛】此题考查线段垂直平分线的性质,解题关键在于作辅助线.6、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、A【解析】将分式方程去分母得,故选A.8、D【解析】分析:过点D作DE⊥BC于点E,根据菱形的性质以及直角三角形的性质得出DE的长,即可得出菱形的面积.详解:如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴∠ADE=30°,∴AE==2,∴DE=,∴菱形ABCD的面积S=DE×AB=8.故选D.点睛:题主要考查了菱形的面积以及其性质,含30°角的直角三角形的性质,勾股定理,得出DE的长是解题关键.9、B【解析】
根据分式的定义看代数式中分母中含有字母的代数式为分式.【详解】x2y-3xy2和分母中不含有字母,为整式;和分母中含有字母为分式,故选B.【点睛】本题考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.10、B【解析】
由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.【详解】∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4-2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.【点睛】考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.二、填空题(每小题3分,共24分)11、22.5°【解析】
连接AC,由正方形性质可知BD=AC,∠ACB=45°,由CE=BD得AC=CE,所以∠CAE=∠CEA,因为∠ACB=∠CAE+∠AEC=2∠AEC=45°,即可得答案.【详解】如图:连接AC,∵ABCD是正方形∴AC=BD,∠ACB=45°,∵CE=BD∴∠CAE=∠CEA,∵∠ACB=∠CAE+∠AEC=2∠AEC=45°∴∠AEC=22.5°,故答案为:22.5°【点睛】本题考查正方形的性质,熟练掌握相关知识是解题关键.12、72【解析】
根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据ECFC=34,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在【详解】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°-90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵ECFC∴设CE=3k,CF=4k,∴EF=DE=E∵∠BAF=∠EFC,且∠B=∠C=90°∴△ABF∽△FCE,∴ABFC=BF∴BF=6k,∴BC=BF+CF=10k=AD,∵AE2=AD2+DE2,∴500=100k2+25k2,∴k=2∴AB=CD=16cm,BC=AD=20cm,∴四边形ABCD的周长=72cm故答案为:72.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.13、2;x<﹣2或0<x<2.【解析】
(2)将A点坐标分别代入两个解析式,可求k;(2)由两个解析式组成方程组,求出交点,通过图象可得解.【详解】(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),∴a=2+2=2,∴A(2,2),∴2,∴k=2,故答案为:2;(2)∵函数y2的图象与直线y2=x+2相交,∴x+2,∴x2=2,x2=﹣2,∵y2>y2,∴x<﹣2或0<x<2,故答案为:x<﹣2或0<x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.14、4【解析】
根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.【详解】由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.所以m的值是4.【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15、4≤m≤1【解析】
设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.【详解】设平移后的直线解析式为y=-2x+m.∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),∴点B(3,2).∵平移后的直线与边BC有交点,∴,解得:4≤m≤1.【点睛】本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.16、3【解析】1217、【解析】
解:设方程的另一个根为n,则有−2+n=−5,解得:n=−3.故答案为【点睛】本题考查一元二次方程的两根是,则18、254【解析】
(1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;(2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.【详解】解:(1)如图1过G作GH⊥AD在Rt△GHE中,GE=BG=1,GH=8所以,EH==6,设AF=x,则则∴解得:x=3∴AF=3,BF=EF=5故△EFG的面积为:×5×1=25;(2)如图2,过F作FK⊥BG于K∵四边形ABCD是矩形∴,∴四边形BGEF是平行四边形由对称性知,BG=EG∴四边形BGEF是菱形∴BG=BF=1,AB=8,AF=6∴KG=4∴FG=.【点睛】本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.三、解答题(共66分)19、且.【解析】
先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m的取值,再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.【详解】方程两边同乘,得,,解得,当时,,,当时,,,故当或时有,方程的解为,其中且,解不等式组得解集,由题意得且,解得且,的取值范围是且.【点睛】本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.20、(1)见解析;(2)甲的成绩比乙稳定;(1)见解析【解析】
(1)根据中位数、平均数的概念计算;
(2)从平均数和方差相结合看,方差越小的越成绩越好;
(1)根据题意,从平均数,中位数两方面分析即可.【详解】解:(1):(1)通过折线图可知:
甲的环数按从小到大排列是5、6、6、7、7、7、7、8、8、9,
则数据的中位数是(7+7)÷2=7;
的平均数=(2+4+6+7+8+7+8+9+9+10)=7;
乙命中9环以上的次数(包括9环)为1.
填表如下:平均数方差中位数命中9环以上的次数(包括9环)甲71.271乙75.47.51(2)因为平均数相同,所以甲的成绩比乙稳定.(1)理由1:因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些;理由2:因为平均数相同,甲的中位数小于乙的中位数,所以乙的成绩比甲好些;理由1:甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.【点睛】本题考查了折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了中位数、平均数和方差的概念.在实际生活中常常用它们分析问题.21、(1)16−6;(2)4;.【解析】
(1)利用完全平方公式和平方差公式计算;(2)先分母有理化,再根据零指数幂的意义计算,然后合并即可;【详解】(1)原式=5−6+9+11−9=16−6;(2)原式=+1+3−1=4;【点睛】此题考查二次根式的混合运算,零指数幂,解题关键在于掌握运算法则.22、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)【解析】
(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;
(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.【详解】解:(1)直线y=﹣x+b中,x=0时,y=b,所以,B(0,b),又C(m,0),所以,OB=b,OC=m,在和中∴点(2)∵m=1,∴b=3,点C(1,0),点D(4,1)∴直线AB解析式为:设直线BC解析式为:y=ax+3,且过(1,0)∴0=a+3∴a=-3∴直线BC的解析式为y=-3x+3,设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,∴直线B′C′的解析式为y=-3x+13,当y=3时,当y=0时,∴△BCD平移的距离是个单位.
(3)当∠PCD=90°,PC=CD时,点P与点B重合,
∴点P(0,3)
如图,当∠CPD=90°,PC=PD时,
∵BC=CD,∠BCD=90°,∠CPD=90°
∴BP=PD
∴点P是BD的中点,且点B(0,3),点D(4,1)
∴点P(2,2)
综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.【点睛】本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.23、(1)证明见解析(2)2【解析】
(1)连接DE.根据三角形的中位线的性质即可得到结论;(2)根据矩形的性质得到∠BAC=∠FEC=90°,解直角三角形即可得到结论.【详解】(1)连接DE,∵E、F分别是AC,BC中点∴EF//AB,EF=12∵点D是AB中点∴AD=12∴四边形ADFE为平行四边形∵点D、E分别为AB、AC中点∴DE=12∵BC=2AF∴DE=AF∴四边形ADEF为矩形.(2)∵四边形ADFE是矩形,∴∠BAC=∠FEC=90°,∵AF=2,F为BC中点,∴BC=4,CF=2,∵∠C=30°∴AC=23,CE=3∴AE=3∴矩形ADEF的周长为23【点睛】本题考查三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030家居装饰行业供需状况政策导向市场细分研究评估发展规划报告
- 幼儿园科学主题教学实例
- 2026年电气传动系统的CAD设计与应用
- 客户服务中心电话接听规范
- 幼儿园识字启蒙卡片制作与教学应用
- 泵送混凝土施工方案
- 学生健康档案管理标准流程
- 小学个性化教学实施方案解析
- 工程项目造价控制创新策略
- 金融数据可视化与分析-第2篇
- 电力合规管理办法
- 糖尿病逆转与综合管理案例分享
- 2025高中思想政治课标测试卷(及答案)
- 2024年全国大学生西门子杯工业自动化挑战赛-ITEM2-逻辑控制赛项-工程设拓梦者队计文件
- 轨迹大数据处理技术的关键研究进展综述
- 《糖尿病合并高血压患者管理指南(2025版)》解读
- 职业暴露考试试题及答案
- DB61-T 1843-2024 酸枣种植技术规范
- 机械密封安装及维护培训
- 古建筑修缮加固施工方案
- DG-TJ08-19-2023园林绿化养护标准
评论
0/150
提交评论