2024届陕西省安康市汉滨区中考一模数学试题含解析_第1页
2024届陕西省安康市汉滨区中考一模数学试题含解析_第2页
2024届陕西省安康市汉滨区中考一模数学试题含解析_第3页
2024届陕西省安康市汉滨区中考一模数学试题含解析_第4页
2024届陕西省安康市汉滨区中考一模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省安康市汉滨区中考一模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B. C. D.2.下列计算正确的是()A.(a)=a B.a+a=aC.(3a)•(2a)=6a D.3a﹣a=33.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A. B. C. D.π4.若不等式组无解,那么m的取值范围是()A.m≤2 B.m≥2 C.m<2 D.m>25.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15° B.30° C.45° D.60°6.在下列各平面图形中,是圆锥的表面展开图的是()A. B. C. D.7.如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是()A. B. C. D.8.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大 B.S的值减小C.S的值先增大,后减小 D.S的值不变9.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A. B. C. D.10.计算±的值为()A.±3 B.±9 C.3 D.911.﹣18的倒数是()A.18 B.﹣18 C.- D.12.若一个多边形的内角和为360°,则这个多边形的边数是(

)A.3

B.4

C.5

D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.14.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°15.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.17.高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.18.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.20.(6分)如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AB=DF.21.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.22.(8分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)23.(8分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.24.(10分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.25.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.26.(12分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?27.(12分)已知是关于的方程的一个根,则__

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数的图象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=.设EG=x,则BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故选B.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.2、A【解析】

根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.3、A【解析】试题解析:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′-S△ABC==.故选A.考点:1.扇形面积的计算;2.旋转的性质.4、A【解析】

先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【详解】由①得,x<m,由②得,x>1,又因为不等式组无解,所以m≤1.故选A.【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.5、B【解析】

根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6、C【解析】

结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选C.【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.7、C【解析】

这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.【详解】解:如图:∵正方形的面积是:4×4=16;扇形BAO的面积是:,∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×=4-π,∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,故选C.【点睛】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.8、D【解析】

作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9、B【解析】

根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.10、B【解析】

∵(±9)2=81,∴±±9.故选B.11、C【解析】

根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-18=1,∴﹣18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12、B【解析】

利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°14、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.15、【解析】分析:以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°.∵⊙O的直径为AB,C为的中点,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的.又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为2π.点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.16、(,2).【解析】

解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.17、B【解析】

利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.18、1【解析】

由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、解:(1)图见解析;(2)证明见解析.【解析】

(1)根据角平分线的作法作出∠ABC的平分线即可.(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.【详解】解:(1)如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四边形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四边形ABFE为菱形.20、详见解析.【解析】

根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.【详解】证明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,

∴∠DAF=∠AEB,

∵DF⊥AE,AE=BC=AD,

∴∠AFD=∠B=90°,

在△ABE和△DFA中

∠AFD=∠B,∠DAF=∠AEB

,AE=AD

∴△ABE≌△DFA(AAS),

∴AB=DF.【点睛】本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.21、1.5千米【解析】

先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则22、此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.23、(1)证明见解析(2)2【解析】

(1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是⊙O的切线;先求出的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD,如图,∵E是的中点,∴∵∴∵AB是⊙O的直径,∴∴∴即∴AC是⊙O的切线;(2)∵∴∵,∴【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.24、(1)①;②n≤1;(2)ac≤1,见解析.【解析】

(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【详解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原抛物线:y=﹣x2+x,②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),其解析式为:y=ax2﹣bx+c过点(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且当x=1时,y=c,对称轴:x=,抛物线开口向上,画草图如右所示.由题知,当1<x<c时,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.25、(1)m≠1且m≠;(2)m=-1或m=-2.【解析】

(1)由方程有两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论