2024届江西省新建一中高三考前热身数学试卷含解析_第1页
2024届江西省新建一中高三考前热身数学试卷含解析_第2页
2024届江西省新建一中高三考前热身数学试卷含解析_第3页
2024届江西省新建一中高三考前热身数学试卷含解析_第4页
2024届江西省新建一中高三考前热身数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省新建一中高三考前热身数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.2.已知集合,集合,则()A. B. C. D.3.已知非零向量、,若且,则向量在向量方向上的投影为()A. B. C. D.4.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.5.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个6.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.8.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,9.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.210.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为()A. B. C. D.411.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.中,点在边上,平分,若,,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则_________.14.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.15.已知集合,,则__________.16.在的展开式中,的系数等于__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)求证:在上存在唯一的极大值;(Ⅲ)直接写出函数在上的零点个数.19.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(l)求直线的普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且.求直线的方程.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求.21.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.22.(10分)已知函数f(x)=x-lnx,g(x)=x2-ax.(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图像上任意两点,且满足>1,求实数a的取值范围;(3)若∃x∈(0,1],使f(x)≥成立,求实数a的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.2、C【解析】

求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:∵,,∴,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.3、D【解析】

设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【详解】,由得,整理得,,解得,因此,向量在向量方向上的投影为.故选:D.【点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.4、D【解析】

由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.5、A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.6、D【解析】

通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.7、A【解析】

由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.8、D【解析】

由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果9、D【解析】

分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.10、D【解析】

如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.11、A【解析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.12、B【解析】

由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.14、【解析】

由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.15、【解析】

直接根据集合和集合求交集即可.【详解】解:,,所以.故答案为:【点睛】本题考查集合的交集运算,是基础题.16、7【解析】

由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)由点可得,由,根据即可求解;(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.【详解】解:(1)由题意可知,,又,得,所以椭圆的方程为(2)证明:设直线的方程为,联立,可得,设,则有,因为,所以,又因为点B与点Q关于原点对称,所以,即,则有,由点在椭圆上,得,所以,所以,即,所以存在实数,使成立【点睛】本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.18、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)函数在有3个零点.【解析】

(Ⅰ)求出导数,写出切线方程;(Ⅱ)二次求导,判断单调递减,结合零点存在性定理,判断即可;(Ⅲ),数形结合得出结论.【详解】解:(Ⅰ),,,故在点,处的切线方程为,即;(Ⅱ)证明:,,,故在递减,又,,由零点存在性定理,存在唯一一个零点,,当时,递增;当时,递减,故在只有唯一的一个极大值;(Ⅲ)函数在有3个零点.【点睛】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题.19、(1)见解析(2)【解析】

(1)将消去参数t可得直线的普通方程,利用x=ρcosθ,可将极坐标方程转为直角坐标方程.(2)利用直线被圆截得的弦长公式计算可得答案.【详解】(1)由消去参数t得(),由得曲线C的直角坐标方程为:(2)由得,圆心为(1,0),半径为2,圆心到直线的距离为,∴,即,整理得,∵,∴,,,所以直线l的方程为:.【点睛】本题考查参数方程,极坐标方程与直角坐标方程之间的互化,考查直线被圆截得的弦长公式的应用,考查分析能力与计算能力,属于基础题.20、(1):;:.(2)【解析】

(1)由可得,由,消去参数,可得直线的普通方程为.由可得,将,代入上式,可得,所以曲线的直角坐标方程为.(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,,,所以.21、(1)(2)或.【解析】

(1)圆的方程已知,根据条件列出方程组,解方程即得;(2)设,,显然直线l的斜率存在,方法一:设直线l的方程为:,将直线方程和椭圆方程联立,消去,可得,同理直线方程和圆方程联立,可得,再由可解得,即得;方法二:设直线l的方程为:,与椭圆方程联立,可得,将其与圆方程联立,可得,由可解得,即得.【详解】(1)记椭圆E的焦距为().右顶点在圆C上,右准线与圆C:相切.解得,,椭圆方程为:.(2)法1:设,,显然直线l的斜率存在,设直线l的方程为:.直线方程和椭圆方程联立,由方程组消去y得,整理得.由,解得.直线方程和圆方程联立,由方程组消去y得,由,解得.又,则有.即,解得,故直线l的方程为或.分法2:设,,当直线l与x轴重合时,不符题意.设直线l的方程为:.由方程组消去x得,,解得.由方程组消去x得,,解得.又,则有.即,解得,故直线l的方程为或.【点睛】本题考查求椭圆的标准方程,以及直线和椭圆的位置关系,考查学生的分析和运算能力.22、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】

(1)是研究在动区间上的最值问题,这类问题的研究方法就是通过讨论函数的极值点与所研究的区间的大小关系来进行求解.(2)注意到函数h(x)的图像上任意不同两点A,B连线的斜率总大于1,等价于h(x1)-h(x2)<x1-x2(x1<x2)恒成立,从而构造函数F(x)=h(x)-x在(0,+∞)上单调递增,进而等价于F′(x)≥0在(0,+∞)上恒成立来加以研究.(3)用处理恒成立问题来处理有解问题,先分离变量转化为求对应函数的最值,得到a≤,再利用导数求函数M(x)=的最大值,这要用到二次求导,才可确定函数单调性,进而确定函数最值.【详解】(1)f′(x)=1-,x>0,令f′(x)=0,则x=1.当t≥1时,f(x)在[t,t+1]上单调递增,f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论