知识点044一次函数的实际问题_第1页
知识点044一次函数的实际问题_第2页
知识点044一次函数的实际问题_第3页
知识点044一次函数的实际问题_第4页
知识点044一次函数的实际问题_第5页
已阅读5页,还剩46页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.(2011•南通)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A、甲的速度是4km/h B、乙的速度是10km/h C、乙比甲晚出发1h D、甲比乙晚到B地3h考点:函数的图象。专题:综合题。分析:根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.解答:解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.点评:本题考查了函数的图象,培养学生观察图象的能力,分析解决问题的能力,要培养学生视图知信息的能力.2.(2011天津,9,3分)一家电信公司给顾客提供两种上网收费方式:方式A以毎分0.1元的价格按上网所用时间计费;方式B除收月基费20元外,再以毎分0.05元的价格按上网所用时间计费.若上网所用时间为x分,计费为y元,如图,是在同一直角坐标系中,分别描述两种计费方式的函数的图象.有下列结论:①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间为500分时,选择方式方法B省钱.其中,正确结论的个数是() A、3 B、2 C、1 D、0考点:函数的图象。专题:应用题;数形结合。分析:根据函数图象的特点依次进行判断即可得出答案.解答:解:根据一次函数图象特点:①图象甲描述的是方式A,正确,②图象乙描述的是方式B,正确,③当上网所用时间为500分时,选择方式B省钱,正确,故选A.点评:本题主要考查了一次函数图象的特点,需要学生根据实际问题进行分析,难度适中.3.(2011重庆市,8,4分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是A.y=0.05x B.y=5xC.y=100xD.y=0.05x+100考点:根据实际问题列一次函数关系式.分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.答案:解:y=100×0.05x,

即y=5x.

故选B.点评:本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.4.(2011浙江绍兴,9,4分)小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是() A.3km/h和4km/hB.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h考点:一次函数的应用。专题:函数思想;方程思想。分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.解答:解:设小敏的速度为:m,函数式则为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=﹣4,b=﹣2.4,由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数式为,y=mx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h.故选D.点评:此题考查的知识点是一次函数的应用,关键是由已知及图象写出两人行走的函数关系式,再根据已知点求出速度.二、填空题1.(2011•泰州,17,3分)“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:每增加1千克重物弹簧伸长0.5cm(只需写出1个).考点:根据实际问题列一次函数关系式。专题:开放型。分析:解题时可以将污染部分看做问题的结论,把问题的结论看作问题的条件,根据条件推得结论即可.解答:解:根据弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5)可以得到:当x=1时,弹簧总长为10.5cm,当x=2时,弹簧总长为11cm,…∴每增加1千克重物弹簧伸长0.5cm,故答案为:每增加1千克重物弹簧伸长0.5cm.点评:本题考查了根据实际问题列一次函数关系式,同时训练了学生的开放性思维,也考查了同学们逆向思考的能力.2.(2011福建龙岩,23,12分)周六上午8:O0小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小明离家的路程y(干米)与x(小时)之间的函致图象如图所示.(1)小明去基地乘车的平均速度是千米/小时,爸爸开车的平均速度应是千米/小时;(2)求线段CD所表示的函敛关系式;(3)问小明能否在12:00前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程.考点:一次函数的应用.分析:(1)仔细观察图象,结合题意即可得出答案;(2)先设一次函数的解析式,然后将两点坐标代入解析式即可得出线段CD所表示的函敛关系式;(3)根据图象和解析式可知小明从出发到回家一共需要4.2小时,故12:00前不能回到家.解答:解:(1)仔细观察图象可知:小明去基地乘车1小时后离基地的距离为30千米,因此小明去基地乘车的平均速度是30千米/小时,在返回时小明以4千米/时的平均速度步行,行驶2千米后遇到爸爸,故他爸爸在0.5小时内行驶了28千米,故爸爸开车的平均速度应是56千米/小时;故答案为30,56;(2)线段CD所表示的函敛关系式为y=kx+b(3.7≤x≤4.2);通过观察可以发现线段CD经过点(3.7,28),(4.2,0);将两点代入函数解析式即可得线段CD的表达式:y=235.2﹣56x(3.7≤x≤4.2);(3)不能.小明从家出发到回家一共需要时间:1+2.2+2÷4×2=4.2(小时),从8:00经过4.2小时已经过了12:00,∴不能再12:00前回家,此时离家的距离:56×0.2=11.2(千米).点评:本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.三、解答题1.(2011江苏淮安,27,2分)小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针每小时旋转30度.他为了进一步研究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了研究方便,他将分针与时针原始位置OP(图2)的夹角记为y1度,时针与原始位置OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟,观察结束后,他利用所得的数据绘制成图象(图3),并求出了y1与t的函数关系式:.请你完成:(1)求出图3中y2与t的函数关系式;(2)直接写出A、B两点的坐标,并解释这两点的实际意义;(3)若小华继续观察一小时,请你在图3中补全图象.考点:一次函数的应用。分析:(1)分针每分钟转过的角度是3060解答:解:(1)y2=0.5t;(2)A(12,6),B(55513,360(3)点评:本题主要考查了一次函数的图象,和交点坐标的求解,正确理解分针与时针转动的情况是解题的关键.2.(2011江苏连云港,27,12分)因长期干旱,甲水库蓄水量降到了正常水位的最低值,为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.求:(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?考点:一次函数的应用。专题:应用题。分析:(1)将B、C两点的坐标代入到一次函数的解析式,利用待定系数法求得函数解析式即可;(2)利用前20小时可以求得甲水库的灌溉速度,用第80小时后可以求得乙水库的灌溉速度;(3)得到乙水库的蓄水量和灌溉时间之间的函数关系式求最小值即可.解答:解:(1)由图象知:线段BC经过点(20,500)和(40,600),∴设解析式为:y=kx+b,∴,解得:QUOTE&k=5&b=200k=5,b=400∴解析式为:y=5x+400;(2)设乙水库的供水速度为x万m3/h,甲为yx万m3/h,∴QUOTE&20(x﹣y)=600﹣500∴乙水库供水速度为15m3/h和甲水库一个排灌闸的灌溉速度10m(3)∵正常水位的最低值为a=500﹣15×20=200,∴(400﹣200)÷(2×10)=10h,∴10小时后到最低值.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.3.(2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym,图中的折线表示小亮在整个行走过程中y与x(1)小亮行走的总路程是3600m,他途中休息了20min;(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?考点:一次函数的应用。专题:应用题。分析:(1)纵坐标为小亮行走的路程,其休息的时间为纵坐标不随x的值的增加而增加;(2)根据当50<x<80时函数图象经过的两点的坐标,利用待定系数法求得函数的解析式即可.解答:解:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+B,根据题意,当x=50时,y=1950;当x=80时,y=3600∴QUOTE&1950=50k+b&3600=80k+b解得:QUOTE&k=55&b=﹣800∴函数关系式为:y=55x﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.点评:本题考查了一次函数的应用,解决此类题目最关键的地方是经过认真审题,从中整理出一次函数模型,用一次函数的知识解决此类问题.4.(2011•江苏宿迁,25,10)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.考点:一次函数的应用。专题:应用题。分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解答:解:(1)①;30;(2)设y有=k1x+30,y无=k2x,由题意得,解得故所求的解析式为y有=0.1x+30;y无=0.2x.(3)由y有=y无,得0.2x=0.1x+30,解得x=300;当x=300时,y=60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.5.(2011•泰州,25,10分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过tmin时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?考点:一次函数的应用。专题:行程问题;数形结合。分析:(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.解答:解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,∴小明的爸爸用的时间为:QUOTE240096=25(min),即OF=25,如图:设s2与t之间的函数关系式为:s2=kt+b,∵E(0,2400),F(25,0),∴QUOTE&b=2400&25k+b=0,解得:QUOTE&b=2400&k=﹣96,∴s2与t之间的函数关系式为:s2=﹣96t+2400;(2)如图:小明用了10分钟到邮局,∴D点的坐标为(22,0),设直线BD即s1与t之间的函数关系式为:s1=at+c,∴QUOTE&12a+c=2400&22a+c=0, 解得:,∴s1与t之间的函数关系式为:s1=﹣240t+5280,当s1=s2时,小明在返回途中追上爸爸,即﹣96t+2400=﹣240t+5280,解得:t=20,∴s1=s2=480,∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.点评:此题考查了一次函数的实际应用.解题的关键是数形结合与方程思想的应用.注意小明的是折线,小明爸爸的是直线,抓住每部分的含义是关键.6.(2011江苏无锡,25,10分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?考点:二次函数的应用;一次函数的应用。专题:销售问题。分析:(1)根据函数图象得出分段函数解析式,注意x的取值范围;(2)利用函(1)中函数解析式表示出w,进而利用函数性质得出最值.解答:解:(1)根据图象可知当x≤20时,y=8000(0<x≤20),当20<x≤40时,将B(20,8000),C(40,4000),代入y=kx+b,得:QUOTE&8000=20k+b&4000=40k+b,解得:QUOTE&k=﹣200&b=12000,y=﹣200x+12000(20<x≤40);(2)根据上式以及老王种植水果的成本是2800元/吨,根据题意得:当x≤20时,W=(8000﹣2800)x=5200x,y随x的增大而增大,当x=20时,W最大=5200×20=104000元,当20<x≤40时,W=(﹣200x+12000﹣2800)x=﹣200x2+9200x,当x=﹣=23时,W最大=QUOTE4ac﹣b24a=105800元.故张经理的采购量为23吨时,老王在这次买卖中所获的利润W最大,最大利润是105800元.点评:此题主要考查了二次函数的应用,利用图象分段求出解析式以及掌握二次函数解析式求最值是解决问题的关键.7.(2011江苏扬州,27,12分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示。根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中的深度与注水时间之间的关系,线段DE表示槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意义是(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果)。考点:一次函数的应用。专题:图表型;数形结合。分析:(1)根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是水位上升速度变缓;(2)分别求出两个水槽中y与x的函数关系式,令y相等即可得到水位相等的时间;(3)用水槽的体积减去水槽中水的体积即可得到铁块的体积;解答:解:(1)乙;水没过铁块;(2)设线段AB、DE的解析式分别为:y1=k1x+b,y2=k2x+b,∵AB经过点(0,2,)和(4,14),DC经过(0,12)和(6,0)∴,QUOTE&4k+b=14&b=2&b=12&6k+b=0,解得,QUOTE&k=3&b=2&k=﹣2&b=12∴解析式为y=3x+2和y=﹣2x+12,令3x+2=﹣2x+12,解得x=2,∴当2分钟是两个水槽水面一样高.(3)由图象知:当水面没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为xcm,则3×(36﹣x)=2.5×36,解得x=6,∴铁块的体积为:6×14=84cm3.(4)(36×19﹣112)÷12=60cm2.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.8.(2011•宁夏,25,10分)甲、乙两人分别乘不同的冲锋舟同时从A地逆流而上前往B地.甲所乘冲锋舟在静水中的速度为QUOTE1112千米/分钟,甲到达B地立即返回.乙所乘冲锋舟在在静水中的速度为QUOTE712千米/分钟.已知A、B两地的距离为20千米,水流速度为QUOTE112千米/分钟,甲、乙乘冲锋舟行驶的距离y(千米)与所用时间x(分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y与x之间的函数关系式.(2)甲、乙两人同时出发后,经过多少分钟相遇?.考点:一次函数的应用。分析:(1)分别求出甲乙两人的速度,依据路程=速度×时间,即可列出函数解析式;(2)解乙的函数解析式与甲由B到A的函数解析式组成的方程组即可.解答:解:(1)甲由A到B时的函数解析式是:y=(QUOTE1112+QUOTE112)x,即y=x;甲到达B所用时间是:20÷(QUOTE1112+QUOTE112)=20分钟,由B到A函数解析式是:y=20﹣(QUOTE1112﹣QUOTE112)(20+x),即y=10﹣QUOTE12x;乙的函数解析式是:y=(QUOTE712+QUOTE112)x,即y=QUOTE23x.(2)根据题意得:QUOTE&y=10﹣12x&y=23x解得:QUOTE&x=60则经过QUOTE607小时相遇.点评:本题主要考查了一次函数的应用,以及函数交点坐标的求法,正确写出函数解析式是解题的关键.9.(2011山东日照,22,9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?考点:一次函数的应用。专题:优选方案问题。分析:(1)首先设调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱(x﹣10)台,列出不等式方程组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.解答:解:(1)根据题意知,调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱(x﹣10)台,(1分)则y=200x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=20x+16800.(2分)∵QUOTE&x≥0&70﹣x≥0&40﹣∴10≤x≤40.(3分)∴y=20x+168009(10≤x≤40);(4分)(2)按题意知:y=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=(20﹣a)x+16800.(5分)∵200﹣a>170,∴a<30.(6分)当0<a<20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;(9分)点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,(1)根据40台空调机,60台电冰箱都能卖完,列出不等式关系式即可求解;(2)由(1)关系式,结合让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,列不等式解答,根据a的不同取值范围,代入利润关系式解答.10.(2011陕西,21,8分)2011年4月28日,以“天人长安,创意自然-------城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:夜票(A)平日普通票(B)指定日普通票(C)60100150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.考点:一次函数的应用;一元一次不等式组的应用。专题:优选方案问题。分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.解答:解(1)B中票数为:3x+8则y=100﹣x﹣3x﹣8化简得,y=﹣4x+92即y与x之间的函数关系式为:y=﹣4x+92(2)w=60x+100(3x+8)+150(﹣4x+92)化简得,w=﹣240x+14600即购票总费用W与X(张)之间的函数关系式为:w=﹣240x+14600(3)由题意得,QUOTE解得,20≤x<23∵x是正整数,∴x可取20、21、22那么共有3种购票方案.从函数关系式w=﹣240x+14600可以看出w随x的增大而减小,当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.11. (2011四川凉山,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.特产特产车型苦荞茶青花椒野生蘑菇每辆汽车运载量(吨)A型22B型42C型16车型ABC每辆车运费(元)150018002000(1)设A型汽车安排辆,B型汽车安排辆,求与之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.考点:一次函数的应用;一元一次不等式组的应用.专题:优选方案问题.分析:(1)利用三种汽车一共运输120吨山货可以得到函数关系式;

(2)利用三种汽车都不少于4辆,可以得到有关x的不等式组,利用解得的不等式组的解得到安排方案即可;

(3)根据题意得到总运费与自变量x的函数关系式,求得其最值即可.解答:解:(1)法①根据题意得化简得:法②根据题意得化简得:.(2)由得,解得.∵为正整数,∴.故车辆安排有三种方案,即:方案一:型车辆,型车辆,型车辆方案二:型车辆,型车辆,型车辆方案三:型车辆,型车辆,型车辆(3)设总运费为元,则∵随的增大而增大,且∴当时,元答:为节约运费,应采用⑵中方案一,最少运费为37100元。点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.12.(2011新疆乌鲁木齐,23,?)小王从A地前往B地,到达后立刻返回.他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示.(1)小王从B地返回到A地用了多少小时?(2)求小王出发6小时后距A地多远?(3)在A、B之间有一C地,小王从去吋途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?考点:一次函数的应用。专题:综合题。分析:(1)根据函数图象即可作出回答;(2)求得DE的解析式,然后令x=6即可求解;(3)求得AB的解析式,小王从C到B用了n小时,列方程即可求得n的值,进而求得距离.解答:解:(1)从B地返到A底所用的时间为4小时;(2)小王出发6小时.由于6>3,可知小王此时在返回途中,于是,设DE所在的直线的解析式为y=kx+b.有图象可知:,解得:∴DE的解析式是y=-60x+420(3≤x≤7)当x=6时,有y=-60x+420=60,∴小王出发6小时后距A60千米;(3)设AD所在直线的解析式是y=mx.由图象可知3m=240,解得m=80∴AD所在直线的解析式是y=80x(0≤x≤3)设小王从C到B用了n小时,则去时C距A的距离为y=240-80n.返回时,从B到C用了(-n)小时,这时C距A的距离为y=-60[3+(QUOTE73-n)]+420=100+60n由240-80n=100+60n,解得n=1故C据A的距离为240-80n=240-80=160米.点评:本题主要考查了一次函数的应用,正确求得函数解析式,把求距离的问题转化为求函数的函数值的问题是解题关键.13.(2011云南保山,23,8分)随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具.某商场计划不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品牌电动摩托的进价和售价如下表所示:A品牌电动摩托B品牌电动摩托进价(元/辆)40003000售价(元/辆)50003500设该商场计划购进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时,获利最大?最大利润是多少?考点:一次函数的应用。专题:应用题。分析:(1)根据题中已知条件列出关于x的一次函数即可;(2)根据题意列出不等式,解不等式便可求出x的取值范围,可知当x=20时,所获得的利润最大.解答:解:(1)设该商场计划进A品牌电动摩托x辆,则进B品牌电动摩托(40﹣x)辆,由题意可知每辆A品牌电动摩托的利润为1000元,每辆B品牌电动摩托的利润为500元,则y=1000x+500(40﹣x)=20000+500x,(2)由题意可知QUOTE&4000x+3000(40﹣x)≤140000解得18≤x≤20;当x=20时,y=30000∴该商场购进A品牌电动摩托20辆时,获利最大,最大利润是30000.点评:本题主要考查了一次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.14.(2011重庆江津区,23,分)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题。专题:综合题。分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,2)和(7,3)代入得:QUOTE&7k+b=3&2k+b=﹣2,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.15.(2010重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:yy2(元/件)x(月)750740730101112O25题图(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)考点:二次函数的应用;一元二次方程的应用;一次函数的应用分析:(1)把表格(1)中任意2点的坐标代入直线解析式可得y1的解析式.把(10,730)(12,750)代入直线解析式可得y2的解析式,;(2)分情况探讨得:1≤x≤9时,利润=P1×(售价﹣各种成本);10≤x≤12时,利润=P2×(售价﹣各种成本);并求得相应的最大利润即可;(3)根据1至5月的总利润1700万元得到关系式求值即可.解答:解:(1)设y1=kx+b,则QUOTE&k+b=560&2k+b=580,解得QUOTE&k=20&b=540,∴y1=20x+540(1≤x≤9,且x取整数);设y2=ax+b,则QUOTE&10a+b=730&12a+b=750,解得QUOTE&a=10&b=630,∴y2=10x+630(10≤x≤12,且x取整数);(2)设去年第x月的利润为W元.1≤x≤9,且x取整数时,W=P1×(1000﹣50﹣30﹣y1)=﹣2x2+16x+418=﹣2(x﹣4)2+450,∴x=4时,W最大=450元;10≤x≤12,且x取整数时,W=P2×(1000﹣50﹣30﹣y2)=(x﹣29)2,∴x=10时,W最大=361元;(3)去年12月的销售量为﹣0.1×12+2.9=1.7(万件),今年原材料价格为:750+60=810(元)今年人力成本为:50×(1+20%)=60元.∴5×[1000×(1+a%)﹣810﹣60﹣30]×1.7(1﹣0.1×a%)=1700,设t=a%,整理得10t2﹣99t+10=0,解得t=QUOTE99±940120,∵9401更接近于9409,∴QUOTE9401≈97,∴t1≈0.1,t2≈9.8,∴a1≈10或a2≈980,∵1.7(1﹣0.1×a%)≥1,∴a≈10.答:a的整数解为10.点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的求值范围得到一定范围内的最大值是解决本题的易错点;利用估算求得相应的整数解是解决本题的难点.16.今年我省干旱灾情严重,甲地急需抗旱用水15万吨,乙地13万吨.现有两水库决定各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米

(1)设从A水库调往甲地的水量为x万吨,完成下表调入地

水量/万吨

调出地甲乙总计AX14B14总

计151328(2)请设计一个调运方案,使水的调运总量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)考点:一次函数的应用.分析:(1)根据由A到甲和乙的综和是14吨,即可表示出由A到乙是14-x吨,再根据到甲的总和是15吨,即可表示;

(2)首先用x表示出调运量的和,根据一次函数的性质,即可确定x的值,进而确定方案.解答:解:(1)调入地

水量/万吨

调出地甲乙总计AX14-x14B15-xx-114总

计151328(2)设调运量是y=50x+30(14-x)+60(15-x)+45(x-1),

即y=5x+1275,

又{x≥014-x≥015-x≥0x-1≥0,

解得:1≤x≤14,

∵y随x的增大而增大.

∴当x=1时,y最小.

则由A到甲1吨,到乙13吨;由B到甲14吨,到乙0吨.点评:本题主要考查了一次函数的应用,正确把调运量表示成x的函数是解题的关键.17.(2011•贺州)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?考点:一次函数的应用;一元一次方程的应用;一元一次不等式的应用。分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30﹣x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.解答:解:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30﹣x)亩,根据题意,2000x+2500(30﹣x)=68000,解得x=14.∴30﹣x=16.答:种植A种生姜14亩,那么种植B种生姜16亩.(2)由题意得,x≥12解得x≥10…(5分)设全部收购该基地生姜的年总收入为y元,则y=8×2000x+7×2500(30﹣x)=﹣1500x+525000…(7分)∵y随x的增大而减小,当x=10时,y有最大值此时,30﹣x=20,y的最大值为510000元.…(8分)答:种植A种生姜10亩,那么种植B种生姜20亩,全部收购该基地生姜的年总收入最多为510000元.…(9分).点评:本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.18.我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.特产特产车型苦荞茶青花椒野生蘑菇每辆汽车运载量(吨)A型22B型42C型16车型ABC每辆车运费(元)150018002000(1)设A型汽车安排辆,B型汽车安排辆,求与之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.考点:一次函数的应用;一元一次不等式组的应用.专题:优选方案问题.分析:(1)利用三种汽车一共运输120吨山货可以得到函数关系式;

(2)利用三种汽车都不少于4辆,可以得到有关x的不等式组,利用解得的不等式组的解得到安排方案即可;

(3)根据题意得到总运费与自变量x的函数关系式,求得其最值即可.解答:解:(1)法①根据题意得化简得:法②根据题意得化简得:.(2)由得,解得.∵为正整数,∴.故车辆安排有三种方案,即:方案一:型车辆,型车辆,型车辆方案二:型车辆,型车辆,型车辆方案三:型车辆,型车辆,型车辆(3)设总运费为元,则∵随的增大而增大,且∴当时,元答:为节约运费,应采用⑵中方案一,最少运费为37100元。点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.19.(2011四川达州,22,7分)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.物资种类ABC每辆汽车运载量(吨)12108每吨所需运费(元/吨)240320200考点:一次函数的应用;一元一次不等式组的应用。专题:函数思想。分析:(1)根据题意列式:12x+10y+8(20﹣x﹣y)=200,变形后即可得到y=20﹣2x;(2)根据装运每种物资的车辆数都不少于5辆,x≥5,20﹣2x≥4,解不等式组即可;(3)根据题意列出利润与x之间的函数关系可发现是二次函数,利用二次函数的顶点公式即可求得最大值,根据实际意义可知整数x=8时,利润最大.解答:(7分)解:(1)根据题意,得:12x+10y+8(20﹣x﹣y)=200,12x+10y+160﹣8x﹣8y=2002x+y=20,∴y=20﹣2x,(2)根据题意,得:QUOTE&x≥5&20﹣2x≥4解之得:5≤x≤8∵x取正整数,∴x=5,6,7,8,∴共有4种方案,即ABC方案一5105方案二686方案三767方案四848(3)设总运费为M元,则M=12×240x+10×320(20﹣2x)+8×200(20﹣x+2x﹣20)即:M=﹣1920x+64000∵M是x的一次函数,且M随x增大而减小,∴当x=8时,M最小,最少为48640元.点评:此题考查的是一次函数的应用,主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.20.(2011,四川乐山,21,10分)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000…y(元)4080160400(1)若y与x满足初中学过的某一函数关系,求函数的解析式;(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费.则乙复印社每月收费y(元)与复印页数x(页)的函数关系为y=0.15x+200;(3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?考点:一次函数的应用。专题:计算题。分析:(1)待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.(2)根据乙复印社每月收费=承包费+按每页0.15元的复印费用,可得相应的函数解析式;(3)先画出函数图象,找到交点坐标,即可作出判断.解答:解:(1)设解析式为y=kx+b,∴QUOTE&100k+b=40&200k+b=80,解得QUOTE&k=0.4&b=0,∴y=0.4x;(2)乙复印社每月收费y(元)与复印页数x(页)的函数关系为:y=0.15x+200.(3)作图如下,由图形可知每月复印页数在1200左右应选择乙复印社.点评:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的作图能力.注意自变量的取值范围不能遗漏.21.(2011•南充,20,8分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?考点:二次函数的应用;一次函数的应用。专题:应用题。分析:(1)把(0,300),(500,200)代入直线解析式可得一次函数解析式,把x=600代入函数解析式可得利润的值;(2)利润=用电量×每千度电产生利润,结合该工厂每天用电量不超过60千度,得到利润的最值即可.解答:解:(1)工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:y=kx+b.(1分)该函数图象过点(0,300),(500,200),∴QUOTE&500k+b=200&b=300,解得.∴y=﹣QUOTE15x+300(x≥0).当电价x=600元/千度时,该工厂消耗每千度电产生利润y=﹣QUOTE15×600+300=180(元/千度).(2)设工厂每天消耗电产生利润为w元,由题意得:W=my=m(﹣QUOTE15QUOTE15x+300)=[m﹣QUOTE15(10m+500)+300].(5分)化简配方,得:w=﹣2(m﹣50)2+5000.(6分)由题意,m≤60,∴当m=50时,w最大=5000,即当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元.(8分)点评:考查二次函数及一次函数的应用;得到总利润的等量关系是解决本题的关键;注意利用配方法解决二次函数的最值问题..22.(2011四川攀枝花,22)某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出来.每瓶香水利润每瓶护肤品利润甲公司180200乙公司160150考点:一次函数的应用。专题:函数思想。分析:(1)设总公司分配给甲公司x瓶香水,用x表示出分配给甲公司的护肤品瓶数、乙公司的香水和护肤品瓶数,根据已知列出函数关系式.(2)根据(1)计算出甲、乙公司的利润进行比较说明.(3)由已知求出x的取值范围,通过计算得出几种不同的方案.解答:解:(1)依题意,甲公司的护肤品瓶数为:40﹣x,乙公司的香水和护肤品瓶数分别是:70﹣x,30﹣(40﹣x)=x﹣10.w=180x+200(40﹣x)+160(70﹣x)+150(x﹣10)=﹣30x+17700.故甲、乙两家公司的总利润W与x之间的函数关系式w=﹣30x+17700.(2)甲公司的利润为:180x+200(40﹣x)=8000﹣20x,乙公司的利润为:160(70﹣x)+150(x﹣10)=9700﹣10x,8000﹣20x﹣(9700﹣10x)=﹣1700﹣10x<0,∴甲公司的利润会不会比乙公司的利润高.(2)由(1)得:QUOTE&x≥0&40﹣x≥0&70﹣x≥0解得:10≤x≤40,再由w=﹣30x+17700≥17370得:x≤11,∴10≤x≤11,∴由两种不同的分配方案.①当x=10时,总公司分配给甲公司10瓶香水,甲公司护肤品30瓶,乙公司60瓶香水,乙公司0瓶护肤品.②当x=11时,总公司分配给甲公司11香水,甲公司29瓶护肤品,乙公司59瓶香水,乙公司1护肤品.点评:此题考查的知识点是一次函数的应用,关键是先求出函数关系式,再对甲乙公司利润进行比较,通过求自变量的取值范围得出方案.23.(2010广东佛山,24,10分)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本(元/千克)与销售月份的关系如图所示:②销售收入(元/千克)与销售月份满足;③销售量(千克)与销售月份满足;试解决以下问题:(1)根据图形,求与之间的函数关系式;(2)求该种商品每月的销售利润(元)与销售月份的函数关系式,并求出哪个月的销售利润最大?考点二次函数的应用;待定系数法求一次函数解析式。分析(1)根据图形,知p与x之间的关系符合一次函数,故可设为p=kx+b,然后将点(1,9)与(6,4)代入函数解析式,即可求得p与x之间的函数关系式;(2)由y=(q﹣p)m,可得y=﹣50x2+400x+1000则可求得4个月的销售利润最大.解答解:(1)根据图形,知p与x之间的关系符合一次函数,故可设为p=kx+b,∴QUOTE&9=k+b&4=6k+b,解得:QUOTE&k=﹣1&b=10,∴p与x的函数关系式为p=﹣x+10;(2)根据题意得:月销售利润y=(q﹣p)m=[(﹣QUOTE32x+15)﹣(﹣x+10)](100x+200),化简得:y=﹣50x2+400x+1000=﹣50(x﹣4)2+1800,∴4月份的销售利润最大.点评此题考查了函数的实际应用问题.解题的关键是能根据题意构建函数模型,然后根据函数的性质求解即可.24.(2011浙江丽水,22,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.考点:一次函数的应用。分析:(1)先根据师生返校时的路程与时间之间的关系列出函数解析式,然后看图将两组对应s与t的值代入可得到一个二元一次方程组,解此方程组可得函数解析式.当返回学校时就是s为0时,t的值;(2)根据题意直接画出该三轮车运送树苗时,离校路程s与时间t之间的图象,看图可得三轮车追上师生时,离学校的路程;(3)先设符合学校要求的植树点与学校的路程为x(km),然后根据往返的平均速度、路程和时间得到一个不等式,解此不等式可得到x的取值范围,再确定植树点是否符合要求.解答:解:(1)设师生返校时的函数解析式为s=kt+b,如图所示,把(12,8)、(13,3)代入上式中得,QUOTE&8=12k+b&3=13k+b解此方程组得,∴s=﹣5t+68,当s=0时,t=13.6,t=13时36分∴师生在13时36分回到学校;(2)该三轮车运送树苗时,离校路程s与时间t之间的图象如图所示:由图象得,当三轮车追上师生时,离学校4km;(3)设符合学校要求的植树点与学校的路程为x(km),由题意得:QUOTEx10+2+x8+8x<QUOTE1779,答:A、B、C植树点符合学校的要求.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.25.(2011浙江金华,22,10分)(本题10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回学校,往返平均速度分别为每小时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km,15km、17km、19km,试通过计算说明哪几个植树点符合要求.考点:一次函数的应用。分析:(1)先根据师生返校时的路程与时间之间的关系列出函数解析式,然后看图将两组对应s与t的值代入可得到一个二元一次方程组,解此方程组可得函数解析式.当返回学校时就是s为0时,t的值;(2)根据题意直接画出该三轮车运送树苗时,离校路程s与时间t之间的图象,看图可得三轮车追上师生时,离学校的路程;(3)先设符合学校要求的植树点与学校的路程为x(km),然后根据往返的平均速度、路程和时间得到一个不等式,解此不等式可得到x的取值范围,再确定植树点是否符合要求.【解】(1)设师生返校时的函数解析式为s=kt+b,把(12,8),(13,3)代入得,,解得,∴s=-5t+68,当s=0时,t=13.6,∴师生在13.6时回到学校;(2)图象见右图,由图象得,当三轮车追上师生时,离学校4km;(3)设符合学校要求的植树点与学校的路程为x(km),由题意得:,解得。答:A、B、C植树点符合学校的要求。26.(2011丽江市中考,23,分)随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品牌电动摩托的进价和售价如下表所示:品牌价格A品牌电动摩托B品牌电动摩托进价(元/辆)40003000售价(元/辆)50003500设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少?考点:一次函数的应用。专题:应用题。分析:(1)根据题中已知条件列出关于x的一次函数即可;(2)根据题意列出不等式,解不等式便可求出x的取值范围,可知当x=20时,所获得的利润最大.解答:解:(1)设该商场计划进A品牌电动摩托x辆,则进B品牌电动摩托(40﹣x)辆,由题意可知每辆A品牌电动摩托的利润为1000元,每辆B品牌电动摩托的利润为500元,则y=1000x+500(40﹣x)=20000+500x,(2)由题意可知QUOTE&4000x+3000(40﹣x)≤140000解得18≤x≤20;当x=20时,y=30000∴该商场购进A品牌电动摩托20辆时,获利最大,最大利润是30000.点评:本题主要考查了一次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.27.(2011湖州,23,10分)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:养殖种类成本(万元)销售额(万元/亩)甲鱼2.43桂鱼22.5(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏?考点:一次函数的应用;分式方程的应用;一元一次不等式的应用.专题:函数思想;方程思想.分析:(1)根据已知列算式求解;(2)先设养殖甲鱼x亩,则养殖桂鱼(30﹣x)亩列不等式,求出x的取值,再表示出王大爷可获得收益为y万元函数关系式求最大值;(3)设大爷原定的运输车辆每次可装载饲料a㎏,结合(2)列分式方程求解.解答:解:(1)2010年王大爷的收益为:20×(3-2.4)+10×(2.5-2)=17(万元),答:王大爷这一年共收益17万元.(2)设养殖甲鱼x亩,则养殖桂鱼(30﹣x)亩.则题意,得2.4x+2(30﹣x)≤70解得x≤25,又设王大爷可获得收益为y万元,则y=0.6x+0.5(30﹣x),即y=QUOTE110x+15.∵函数值y随x的增大而增大,∴当x=25时,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,桂鱼5亩.(3)设大爷原定的运输车辆每次可装载饲料akg.由(2)得,共需要饲料为500×25+700×5=16000kg,根据题意,得,解得a=4000kg.答:王大爷原定的运输车辆每次可装载饲料4000kg.点评:此题考查的知识点是一次函数的应用,分是方程的应用及一元一次不等式的应用,解题的关键是列不等式求x的取值范围,再表示出函数关系求最大值,再列分式方程求解.28.(2011浙江嘉兴,21,10分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:大桥名称舟山跨海大桥杭州湾跨海大桥大桥长度48千米36千米过桥费100元80元我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.考点:一次函数的应用;一元一次方程的应用.分析:(1)根据往返的时间.速度和路程可得到一个一元一次方程,解此方程可得舟山与嘉兴两地间的高速公路路程;(2)根据表格和林老师从舟山到嘉兴所花的高速公路通行费可以将解析式y=ax+b+5转换成一个含有未知数a的一元一次方程,解此方程可得轿车的高速公路里程费.解答:解:(1)设舟山与嘉兴两地间的高速公路路程为s千米,由题意得,=10解得,s=360,所以舟山与嘉兴两地间的高速公路路程为:360千米;(2)轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,根据表格和林老师的通行费可知,y=295.4,x=360﹣48﹣36=276,b=100+80=180,将它们代入y=ax+b+5中得,295.4=276a+180+5,解得,a=0.4,所以轿车的高速公路里程费为:0.4元/千米.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求值时,关键是应用一次函数的性质;即由函数y随x的变化,确定取值.29.(2011广东深圳,22,9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:出发地

目的地甲地乙地A馆800元/台700元/台B馆500元/台600元/台表2出发地

目的地甲地乙地A馆x台18-x(台)B馆17-x(台)x-3

(台)(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x

(台)

的函数关系式;

(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;

(3)当x为多少时,总运费最小,最小值是多少?考点:一次函数的应用.分析:(1)根据甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台,得出它们之间的等量关系;

(2)根据要使总运费不高于20200元,得出200x+19300≤20200,即可得出答案;

(3)根据一次函数的增减性得出一次函数的最值.解答:解:(1)根据题意得:

y=800x+700(18-x)+500(17-x)+600(x-3),

=200x+19300;

(2)∵要使总运费不高于20200元,

∴200x+19300≤20200,

解得:x≤4.5,

该公司设计调配方案有:甲地运往A馆4台,运往B馆13台,乙地运往A馆14台,运往B馆1台;

甲地运往A馆3台,运往B馆14台,乙地运往A馆13台,运往B馆2台;

当地运往A馆2台,运往B馆15台,此时不符合题意舍去;

∴共有两种运输方案;

(3)∵y=200x+19300,

∴y随x的增大而增大,

∴当x为3时,总运费最小,最小值是y=200×3+19300=19900元.点评:此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.30.2011湖北黄石,23,8分)今年,号称“千湖之省”的湖北正遭受大早,为提高学生环保意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(吨)单价(元/吨)不大于10吨部分1.5大于10吨不大于m吨部分((20≤m≤50)2大于m吨部分3(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数式;(3)若该用户六月份用水量为40吨,缴纳水费y元的取位范围为70≤y≤90,试求m的取值范围.考点:一次函数的应用。专题:应用题。分析:(1)用水18吨交费时包括两部分:10吨以内和超过10吨部分;(2)利用水费的不同阶段的收费标准列出函数关系式即可;(3)用40代替上题求得的函数的解析式,利用缴纳水费y元的取位范围为70≤y≤90得到有关m的不等式组,解得即可.解答:解:(1)∵六月份用水量为18吨,∴应缴纳水费10×1.5+8×2=31元;(2)y=1.5x(x≤10)y=2(m﹣10)+15=2m﹣5(10<x≤m)y=3(x﹣m)+2(m﹣10)+15=3x﹣m﹣5;(3)当x=40时,y=3×40﹣m﹣5=115﹣m∵缴纳水费y元的取位范围为70≤y≤90,∴70≤115﹣m≤90,解得m≤55∴m的取值范围25≤x≤45.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.31.(2011•随州)今年我省干旱灾情严重,甲地急需抗旱用水15万吨,乙地13万吨.现有两水库决定各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米(1)设从A水库调往甲地的水量为x万吨,完成下表调入地水量/万吨调出地甲乙总计AX14B14总计151328(2)请设计一个调运方案,使水的调运总量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)考点:一次函数的应用。分析:(1)根据由A到甲和乙的综和是14吨,即可表示出由A到乙是14﹣x吨,再根据到甲的总和是15吨,即可表示;(2)首先用x表示出调运量的和,根据一次函数的性质,即可确定x的值,进而确定方案.解答:解:(1)调入地水量/万吨调出地甲乙总计AX14﹣x14B15﹣xx﹣114总计151328(2)设调运量是y=50x+30(14﹣x)+60(15﹣x)+45(x﹣1),即y=5x+1275,又&x≥0&14解得:1≤x≤14,∵y随x的增大而增大.∴当x=1时,y最小.则由A到甲1吨,到乙13吨;由B到甲14吨,到乙0吨.点评:本题主要考查了一次函数的应用,正确把调运量表示成x的函数是解题的关键.32.(2011梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论