高考大一轮复习备考资料之数学人教A版全国用讲义第十三章推理与证明算法复数13-2_第1页
高考大一轮复习备考资料之数学人教A版全国用讲义第十三章推理与证明算法复数13-2_第2页
高考大一轮复习备考资料之数学人教A版全国用讲义第十三章推理与证明算法复数13-2_第3页
高考大一轮复习备考资料之数学人教A版全国用讲义第十三章推理与证明算法复数13-2_第4页
高考大一轮复习备考资料之数学人教A版全国用讲义第十三章推理与证明算法复数13-2_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直接证明与间接证明最新考纲考情考向分析1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解反证法的思考过程和特点.本节主要内容是直接证明的方法——综合法和分析法,间接证明的方法——反证法,它常以立体几何中的证明及相关选修内容中平面几何,不等式的证明为载体加以考查,注意提高分析问题、解决问题的能力;在高考中主要以解答题的形式考查,难度中档.1.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:eq\x(P⇒Q1)→eq\x(Q1⇒Q2)→eq\x(Q2⇒Q3)→…→eq\x(Qn⇒Q)(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:eq\x(Q⇐P1)→eq\x(P1⇐P2)→eq\x(P2⇐P3)→…→eq\x(得到一个明显成立的条件)(其中Q表示要证明的结论).③思维过程:执果索因.2.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.(×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(3)用反证法证明结论“a>b”时,应假设“a<b”.(×)(4)反证法是指将结论和条件同时否定,推出矛盾.(×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.(√)(6)证明不等式eq\r(2)+eq\r(7)<eq\r(3)+eq\r(6)最合适的方法是分析法.(√)题组二教材改编2.[P89T2]若P=eq\r(a+6)+eq\r(a+7),Q=eq\r(a+8)+eq\r(a+5)(a≥0),则P,Q的大小关系是()A.P>Q B.P=QC.P<Q D.由a的取值确定答案A解析P2=2a+13+2eq\r(a2+13a+42),Q2=2a+13+2eq\r(a2+13a+40),∴P2>Q2,又∵P>0,Q>0,∴P>Q.3.[P91B组T2]设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,则eq\f(a,x)+eq\f(c,y)等于()A.1B.2C.4D.6答案B解析由题意,得x=eq\f(a+b,2),y=eq\f(b+c,2),b2=ac,∴xy=eq\f(a+bb+c,4),eq\f(a,x)+eq\f(c,y)=eq\f(ay+cx,xy)=eq\f(a·\f(b+c,2)+c·\f(a+b,2),xy)=eq\f(ab+c+ca+b,2xy)=eq\f(ab+bc+2ac,2xy)=eq\f(ab+bc+ac+b2,2xy)=eq\f(a+bb+c,2xy)=eq\f(a+bb+c,2×\f(a+bb+c,4))=2.题组三易错自纠4.若a,b,c为实数,且a<b<0,则下列命题正确的是()A.ac2<bc2 B.a2>ab>b2C.eq\f(1,a)<eq\f(1,b) D.eq\f(b,a)>eq\f(a,b)答案B解析a2-ab=a(a-b),∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>ab.①又ab-b2=b(a-b)>0,∴ab>b2,②由①②得a2>ab>b2.5.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案A解析方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故选A.6.(2017·德州一模)如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则△A2B2C2是__________三角形.答案钝角解析由条件知,△A1B1C1的三个内角的余弦值均大于0,则△A1B1C1是锐角三角形,假设△A2B2C2是锐角三角形.由eq\b\lc\{\rc\(\a\vs4\al\co1(sinA2=cosA1=sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-A1)),,sinB2=cosB1=sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-B1)).,sinC2=cosC1=sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-C1)),))得eq\b\lc\{\rc\(\a\vs4\al\co1(A2=\f(π,2)-A1,,B2=\f(π,2)-B1,,C2=\f(π,2)-C1.))那么,A2+B2+C2=eq\f(π,2),这与三角形内角和为π相矛盾.所以假设不成立.假设△A2B2C2是直角三角形,不妨设A2=eq\f(π,2),则cosA1=sinA2=1,A1=0,矛盾.所以△A2B2C2是钝角三角形.题型一综合法的应用1.(2018·绥化模拟)设a,b,c均为正实数,则三个数a+eq\f(1,b),b+eq\f(1,c),c+eq\f(1,a)()A.都大于2 B.都小于2C.至少有一个不大于2 D.至少有一个不小于2答案D解析∵a>0,b>0,c>0,∴eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,b)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(b+\f(1,c)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(c+\f(1,a)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,a)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(b+\f(1,b)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(c+\f(1,c)))≥6,当且仅当a=b=c=1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.2.(2018·大庆质检)如果aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a)成立,则a,b应满足的条件是__________________________.答案a≥0,b≥0且a≠b解析∵aeq\r(a)+beq\r(b)-(aeq\r(b)+beq\r(a))=eq\r(a)(a-b)+eq\r(b)(b-a)=(eq\r(a)-eq\r(b))(a-b)=(eq\r(a)-eq\r(b))2(eq\r(a)+eq\r(b)).∴当a≥0,b≥0且a≠b时,(eq\r(a)-eq\r(b))2(eq\r(a)+eq\r(b))>0.∴aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a)成立的条件是a≥0,b≥0且a≠b.3.(2018·武汉月考)若a,b,c是不全相等的正数,求证:lgeq\f(a+b,2)+lgeq\f(b+c,2)+lgeq\f(c+a,2)>lga+lgb+lgc.证明∵a,b,c∈(0,+∞),∴eq\f(a+b,2)≥eq\r(ab)>0,eq\f(b+c,2)≥eq\r(bc)>0,eq\f(a+c,2)≥eq\r(ac)>0.由于a,b,c是不全相等的正数,∴上述三个不等式中等号不能同时成立,∴eq\f(a+b,2)·eq\f(b+c,2)·eq\f(c+a,2)>abc>0成立.上式两边同时取常用对数,得lgeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)·\f(b+c,2)·\f(c+a,2)))>lgabc,∴lgeq\f(a+b,2)+lgeq\f(b+c,2)+lgeq\f(c+a,2)>lga+lgb+lgc.思维升华(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.题型二分析法的应用典例(2018·长沙模拟)已知函数f(x)=tanx,x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),若x1,x2∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),且x1≠x2,求证:eq\f(1,2)[f(x1)+f(x2)]>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))).证明要证eq\f(1,2)[f(x1)+f(x2)]>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))),即证明eq\f(1,2)(tanx1+tanx2)>taneq\f(x1+x2,2),只需证明eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(sinx1,cosx1)+\f(sinx2,cosx2)))>taneq\f(x1+x2,2),只需证明eq\f(sinx1+x2,2cosx1cosx2)>eq\f(sinx1+x2,1+cosx1+x2).由于x1,x2∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),故x1+x2∈(0,π).所以cosx1cosx2>0,sin(x1+x2)>0,1+cos(x1+x2)>0,故只需证明1+cos(x1+x2)>2cosx1cosx2,即证1+cosx1cosx2-sinx1sinx2>2cosx1cosx2,即证cos(x1-x2)<1.由x1,x2∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),x1≠x2知上式显然成立,因此eq\f(1,2)[f(x1)+f(x2)]>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))).引申探究若本例中f(x)变为f(x)=3x-2x,试证:对于任意的x1,x2∈R,均有eq\f(fx1+fx2,2)≥feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))).证明要证明eq\f(fx1+fx2,2)≥feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))),即证明≥-2·eq\f(x1+x2,2),因此只要证明-(x1+x2)≥-(x1+x2),即证明≥,因此只要证明≥,由于当x1,x2∈R时,>0,>0,由基本不等式知≥显然成立,当且仅当x1=x2时,等号成立.故原结论成立.思维升华(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.跟踪训练已知a>0,证明:eq\r(a2+\f(1,a2))-eq\r(2)≥a+eq\f(1,a)-2.证明要证eq\r(a2+\f(1,a2))-eq\r(2)≥a+eq\f(1,a)-2,只需证eq\r(a2+\f(1,a2))≥eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,a)))-(2-eq\r(2)).因为a>0,所以eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,a)))-(2-eq\r(2))>0,所以只需证eq\b\lc\(\rc\)(\a\vs4\al\co1(\r(a2+\f(1,a2))))2≥eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,a)))-2-\r(2)))2,即2(2-eq\r(2))eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,a)))≥8-4eq\r(2),只需证a+eq\f(1,a)≥2.因为a>0,a+eq\f(1,a)≥2显然成立(当a=eq\f(1,a)=1时等号成立),所以要证的不等式成立.题型三反证法的应用命题点1证明否定性命题典例(2018·株州月考)设{an}是公比为q的等比数列.(1)推导{an}的前n项和公式;(2)设q≠1,证明:数列{an+1}不是等比数列.(1)解设{an}的前n项和为Sn,则当q=1时,Sn=a1+a1+…+a1=na1;当q≠1时,Sn=a1+a1q+a1q2+…+a1qn-1,①qSn=a1q+a1q2+…+a1qn,②①-②得,(1-q)Sn=a1-a1qn,∴Sn=eq\f(a11-qn,1-q),∴Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a11-qn,1-q),q≠1.))(2)证明假设{an+1}是等比数列,则对任意的k∈N*,(ak+1+1)2=(ak+1)(ak+2+1),aeq\o\al(2,k+1)+2ak+1+1=akak+2+ak+ak+2+1,aeq\o\al(2,1)q2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1,∵a1≠0,∴2qk=qk-1+qk+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{an+1}不是等比数列.命题点2证明存在性命题典例已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=eq\r(2),SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.(1)证明由已知得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,∴SA⊥平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD.∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.∴不存在这样的点F,使得BF∥平面SAD.命题点3证明唯一性命题典例(2018·宜昌模拟)已知M是由满足下列条件的函数构成的集合:对任意f(x)∈M,①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.(1)判断函数f(x)=eq\f(x,2)+eq\f(sinx,4)是不是集合M中的元素,并说明理由;(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈(m,n),使得等式f(n)-f(m)=(n-m)f′(x0)成立.试用这一性质证明:方程f(x)-x=0有且只有一个实数根.(1)解①当x=0时,f(0)=0,所以方程f(x)-x=0有实数根0;②f′(x)=eq\f(1,2)+eq\f(cosx,4),所以f′(x)∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,4),\f(3,4))),满足条件0<f′(x)<1.由①②可得,函数f(x)=eq\f(x,2)+eq\f(sinx,4)是集合M中的元素.(2)证明假设方程f(x)-x=0存在两个实数根α,β(α≠β),则f(α)-α=0,f(β)-β=0.不妨设α<β,根据题意存在c∈(α,β),满足f(β)-f(α)=(β-α)f′(c).因为f(α)=α,f(β)=β,且α≠β,所以f′(c)=1.与已知0<f′(x)<1矛盾.又f(x)-x=0有实数根,所以方程f(x)-x=0有且只有一个实数根.思维升华应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p⇒q”的条件和结论;第二步:作出与命题结论q相反的假设綈q;第三步:由p和綈q出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q不真,于是原结论q成立,从而间接地证明了命题p⇒q为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.跟踪训练若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.(1)设g(x)=eq\f(1,2)x2-x+eq\f(3,2)是[1,b]上的“四维光军”函数,求常数b的值;(2)是否存在常数a,b(a>-2),使函数h(x)=eq\f(1,x+2)是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由.解(1)由题设得g(x)=eq\f(1,2)(x-1)2+1,其图象的对称轴为x=1,区间[1,b]在对称轴的右边,所以函数在区间[1,b]上单调递增.由“四维光军”函数的定义可知,g(1)=1,g(b)=b,即eq\f(1,2)b2-b+eq\f(3,2)=b,解得b=1或b=3.因为b>1,所以b=3.(2)假设存在常数a,b(a>-2),使函数h(x)=eq\f(1,x+2)是区间[a,b]上的“四维光军”函数,因为h(x)=eq\f(1,x+2)在区间(-2,+∞)上单调递减,所以有eq\b\lc\{\rc\(\a\vs4\al\co1(ha=b,,hb=a,))即eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,a+2)=b,,\f(1,b+2)=a,))解得a=b,这与已知矛盾.故不存在.反证法在证明题中的应用典例(12分)(2018·衡阳调研)直线y=kx+m(m≠0)与椭圆W:eq\f(x2,4)+y2=1相交于A,C两点,O是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.思想方法指导在证明否定性命题,存在性命题,唯一性命题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.规范解答(1)解因为四边形OABC为菱形,则AC与OB相互垂直平分.由于O(0,0),B(0,1),所以设点Aeq\b\lc\(\rc\)(\a\vs4\al\co1(t,\f(1,2))),代入椭圆方程得eq\f(t2,4)+eq\f(1,4)=1,则t=±eq\r(3),故|AC|=2eq\r(3).[4分](2)证明假设四边形OABC为菱形,因为点B不是W的顶点,且AC⊥OB,所以k≠0.由eq\b\lc\{\rc\(\a\vs4\al\co1(x2+4y2=4,,y=kx+m,))消y并整理得(1+4k2)x2+8kmx+4m2-4=0.[6分]设A(x1,y1),C(x2,y2),则eq\f(x1+x2,2)=-eq\f(4km,1+4k2),eq\f(y1+y2,2)=k·eq\f(x1+x2,2)+m=eq\f(m,1+4k2).所以AC的中点为Meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(-4km,1+4k2),\f(m,1+4k2))).[8分]因为M为AC和OB的交点,且m≠0,k≠0,所以直线OB的斜率为-eq\f(1,4k),因为k·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,4k)))=-eq\f(1,4)≠-1,所以AC与OB不垂直.[10分]所以四边形OABC不是菱形,与假设矛盾.所以当点B在W上且不是W的顶点时,四边形OABC不可能是菱形.[12分]1.(2018·岳阳调研)已知函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x,a,b为正实数,A=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2))),B=f(eq\r(ab)),C=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2ab,a+b))),则A,B,C的大小关系为()A.A≤B≤C B.A≤C≤BC.B≤C≤A D.C≤B≤A答案A解析因为eq\f(a+b,2)≥eq\r(ab)≥eq\f(2ab,a+b),又f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x在R上是单调减函数,故feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))≤f(eq\r(ab))≤feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2ab,a+b))).2.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证eq\r(b2-ac)<eq\r(3)a”索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0答案C解析由题意知eq\r(b2-ac)<eq\r(3)a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.3.(2017·郑州模拟)设x>0,P=2x+2-x,Q=(sinx+cosx)2,则()A.P>Q B.P<QC.P≤Q D.P≥Q答案A解析因为2x+2-x≥2eq\r(2x·2-x)=2(当且仅当x=0时等号成立),而x>0,所以P>2;又(sinx+cosx)2=1+sin2x,而sin2x≤1,所以Q≤2.于是P>Q.故选A.4.①已知p3+q3=2,证明:p+q≤2.用反证法证明时,可假设p+q≥2;②若a,b∈R,|a|+|b|<1,求证:方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()A.①与②的假设都错误B.①的假设正确;②的假设错误C.①与②的假设都正确D.①的假设错误;②的假设正确答案D解析对于①,结论的否定是p+q>2,故①中的假设错误;对于②,其假设正确,故选D.5.若eq\f(1,a)<eq\f(1,b)<0,则下列结论不正确的是()A.a2<b2 B.ab<b2C.a+b<0 D.|a|+|b|>|a+b|答案D解析∵eq\f(1,a)<eq\f(1,b)<0,∴0>a>b.∴a2<b2,ab<b2,a+b<0,|a|+|b|=|a+b|.6.(2018·济宁模拟)设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是()A.②③ B.①②③C.③ D.③④⑤答案C解析若a=eq\f(1,2),b=eq\f(2,3),则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,下面用反证法证明:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,a,b中至少有一个大于1.7.用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是__________________.答案a,b都不能被5整除8.(2018·邢台调研)eq\r(6)+eq\r(7)与2eq\r(2)+eq\r(5)的大小关系为______________.答案eq\r(6)+eq\r(7)>2eq\r(2)+eq\r(5)解析要比较eq\r(6)+eq\r(7)与2eq\r(2)+eq\r(5)的大小,只需比较(eq\r(6)+eq\r(7))2与(2eq\r(2)+eq\r(5))2的大小,只需比较6+7+2eq\r(42)与8+5+4eq\r(10)的大小,只需比较eq\r(42)与2eq\r(10)的大小,只需比较42与40的大小,∵42>40,∴eq\r(6)+eq\r(7)>2eq\r(2)+eq\r(5).9.已知点An(n,an)为函数y=eq\r(x2+1)图象上的点,Bn(n,bn)为函数y=x图象上的点,其中n∈N*,设cn=an-bn,则cn与cn+1的大小关系为 ________________________________________________________________________.答案cn+1<cn解析由条件得cn=an-bn=eq\r(n2+1)-n=eq\f(1,\r(n2+1)+n),则cn随n的增大而减小,∴cn+1<cn.10.(2017·武汉联考)已知直线l⊥平面α,直线m⊂平面β,有下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.答案①③解析①eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥α,α∥β))⇒l⊥β,又∵m⊂β,∴l⊥m,①正确;②eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥α,α⊥β))⇒l∥β或l⊂β,∴l,m平行、相交、异面都有可能,故②错误;③eq\b\lc\\rc\}(\a\vs4\al\co1(l∥m,l⊥α))⇒m⊥α,又m⊂β,∴β⊥α,故③正确;④eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥α,l⊥m))⇒m⊂α或m∥α.又m⊂β,∴α,β可能相交或平行,故④错误.11.(2017·黄冈模拟)设数列{an}的前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,且m≠-3且m≠0.(1)求证:{an}是等比数列;(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=eq\f(3,2)f(bn-1)(n∈N*,n≥2),求证:eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,bn)))为等差数列.证明(1)由(3-m)Sn+2man=m+3,得(3-m)Sn+1+2man+1=m+3.两式相减,得(3+m)an+1=2man,m≠-3且m≠0,∴eq\f(an+1,an)=eq\f(2m,m+3),∴{an}是等比数列.(2)∵(3-m)Sn+2man=m+3,∴(3-m)a1+2ma1=m+3,∴a1=1.b1=a1=1,q=f(m)=eq\f(2m,m+3),∴当n∈N*且n≥2时,bn=eq\f(3,2)f(bn-1)=eq\f(3,2)·eq\f(2bn-1,bn-1+3),得bnbn-1+3bn=3bn-1,即eq\f(1,bn)-eq\f(1,bn-1)=eq\f(1,3).∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,bn)))是首项为1,公差为eq\f(1,3)的等差数列.12.(2017·北京)设{an}和{bn}是两个等差数列,记cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.(1)若an=n,bn=2n-1,求c1,c2,c3的值,并证明{cn}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,eq\f(cn,n)>M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.(1)解c1=b1-a1=1-1=0,c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1,c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=-2.当n≥3时,(bk+1-nak+1)-(bk-nak)=(bk+1-bk)-n(ak+1-ak)=2-n<0,所以bk-nak在k∈N*上单调递减.所以cn=max{b1-a1n,b2-a2n,…,bn-ann}=b1-a1n=1-n.所以对任意n≥1,cn=1-n,于是cn+1-cn=-1,所以{cn}是等差数列.(2)证明设数列{an}和{bn}的公差分别为d1,d2,则bk-nak=b1+(k-1)d2-[a1+(k-1)d1]n=b1-a1n+(d2-nd1)(k-1).所以cn=eq\b\lc\{\rc\(\a\vs4\al\co1(b1-a1n+n-1d2-nd1,d2>nd1,,b1-a1n,d2≤nd1.))①当d1>0时,取正整数m>eq\f(d2,d1),则当n≥m时,nd1>d2,因此,cn=b1-a1n,此时,cm,cm+1,cm+2,…是等差数列.②当d1=0时,对任意n≥1,cn=b1-a1n+(n-1)max{d2,0}=b1-a1+(n-1)(max{d2,0}-a1).此时,c1,c2,c3,…,cn,…是等差数列.③当d1<0时,当n>eq\f(d2,d1)时,有nd1<d2,所以eq\f(cn,n)=eq\f(b1-a1n+n-1d2-nd1,n)=n(-d1)+d1-a1+d2+eq\f(b1-d2,n)≥n(-d1)+d1-a1+d2-|b1-d2|.对任意正数M,取正整数m>maxeq\b\lc\{\rc\}(\a\vs4\al\co1(\f(M+|b1-d2|+a1-d1-d2,-d1),\f(d2,d1))),故当n≥m时,eq\f(cn,n)>M.13.(2018·长春模拟)若二次函数f(x)=4x2-2(p-2)x-2p2-p+1,在区间[-1,1]内至少存在一点c,使f(c)>0,则实数p的取值范围是____________.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(-3,\f(3,2)))解析若二次函数f(x)≤0在区间[-1,1]内恒成立,则eq\b\lc\{\rc\(\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论