山东省青岛市城阳第十三中学2024届中考适应性考试数学试题含解析_第1页
山东省青岛市城阳第十三中学2024届中考适应性考试数学试题含解析_第2页
山东省青岛市城阳第十三中学2024届中考适应性考试数学试题含解析_第3页
山东省青岛市城阳第十三中学2024届中考适应性考试数学试题含解析_第4页
山东省青岛市城阳第十三中学2024届中考适应性考试数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市城阳第十三中学2024届中考适应性考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.112.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°3.下列基本几何体中,三视图都是相同图形的是()A. B. C. D.4.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1075.下列说法中,正确的是()A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形6.如图所示的图形,是下面哪个正方体的展开图()A. B. C. D.7.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>28.|﹣3|的值是()A.3 B. C.﹣3 D.﹣9.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是()A.1 B.2 C.3 D.410.不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.12.如图,已知反比例函数y=kx13.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.14.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.15.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).16.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.17.若从-3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.三、解答题(共7小题,满分69分)18.(10分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)19.(5分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?20.(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.21.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)22.(10分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放C炉烟气排放15%D其他(滥砍滥伐等)请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.23.(12分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.24.(14分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.2、D【解析】试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.考点:众数;算术平均数.3、C【解析】

根据主视图、左视图、俯视图的定义,可得答案.【详解】球的三视图都是圆,故选C.【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.4、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7490000=7.49×106.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.解:A.两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B.两个轴对称的三角形,一定全等,正确;C.三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D.三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.6、D【解析】

根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A.因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B.因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B;C.因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D.因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D;故选D.【点睛】本题考查了学生的空间想象能力,解决本题的关键突破口是掌握正方体的展开图特征.7、D【解析】

先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,

∴A、B两点关于原点对称,

∵点A的横坐标为1,∴点B的横坐标为-1,

∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,

∴当y1>y1时,x的取值范围是-1<x<0或x>1.

故选:D.【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.8、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.9、B【解析】

根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:B.【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.10、C【解析】

分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】

连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.【详解】解:连接OP、OB,∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,又∵点P是半圆弧AC的中点,OA=OC,∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,∴两部分面积之差的绝对值是点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.12、34【解析】

由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.【详解】∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=1.5x∴S△OAD=12×1.5=3故答案为:34【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数y=kx(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数k,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于13、【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.14、(Ⅰ)AC=4(Ⅱ)4,2.【解析】

(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案为:4,2.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.15、>【解析】

分别根据方差公式计算出甲、乙两人的方差,再比较大小.【详解】∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.故答案为:>.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、3或6【解析】

分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.【详解】设AC和BE相交于点O.当P在OA上时,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴BD=AB=9,OB=OD=BD=.则AO=.在直角△OBP中,OP=.则AP=OA-OP-;当P在OC上时,AP=OA+OP=.故答案是:3或6.【点睛】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.17、【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.三、解答题(共7小题,满分69分)18、51.96米.【解析】

先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,∴(米).答:文峰塔的高度CD约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.19、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解20、(1);(2).【解析】

(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.【详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:,故答案为:;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:,即顾客享受折上折优惠的概率是.【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.21、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】

(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22、(1)200人,;(2)见解析,;(3)75万人.【解析】

(1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;(2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;(3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.【详解】(1)本次被调查的市民共有:(人),∴,;(2)组的人数是(人)、组的人数是(人),∴;补全的条形统计图如下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论