




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市第四中学2025届高一数学第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与曲线有公共点,则的取值范围是()A. B.C. D.2.已知数列(,)具有性质:对任意、(),与两数中至少有一个是该数列中的一项,对于命题:①若数列具有性质,则;②若数列,,()具有性质,则;下列判断正确的是()A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题3.在中,角的对边分别为,若,则A.无解 B.有一解C.有两解 D.解的个数无法确定4.用数学归纳法证明n+1n+2⋯n+n=-2A.2k+1 B.22k+1 C.2k+1k+15.如图是函数的部分图象2,则该解析式为()A. B.C. D.6.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c7.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁 B.11岁 C.20岁 D.35岁8.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件9.已知两条直线与两个平面,给出下列命题:①若,则;②若,则;③若,则;④若,则;其中正确的命题个数为A.1 B.2 C.3 D.410.已知向量,若,则的最小值为().A.12 B. C.16 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角的对边分别为,若的周长为,面积为,,则__________.12.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.13.已知等差数列中,,,则该等差数列的公差的值是______.14.已知,,,则在方向上的投影为__________.15.数列的前项和,则__________.16.函数的定义域为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.年月日是第二十七届“世界水日”,月日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取、两个小区各户家庭,记录他们月份的用水量(单位:)如下表:小区家庭月用水量小区家庭月用水量(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?(2)从用水量不少于的家庭中,、两个小区各随机抽取一户,求小区家庭的用水量低于小区的概率.18.如图,在三棱柱中,为正三角形,为的中点,,,.(1)证明:平;(2)证明:平面平面.19.中,D是边BC上的点,满足,,.(1)求;(2)若,求BD的长.20.已知数列满足.(1)若,证明:数列是等比数列,求的通项公式;(2)求的前项和.21.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题2、A【解析】
本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证.【详解】解:①若数列具有性质,取数列中最大项,则与两数中至少有一个是该数列中的一项,而不是该数列中的项,是该数列中的项,又由,;故①正确;②数列,,具有性质,,与至少有一个是该数列中的一项,且,若是该数列中的一项,则,,易知不是该数列的项,.若是该数列中的一项,则或或,a、若同,b、若,则,与矛盾,c、,则,综上.故②正确.故选:.【点睛】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.3、C【解析】
求得,根据,即可判定有两解,得到答案.【详解】由题意,因为,又由,且,所以有两解.【点睛】本题主要考查了三角形解的个数的判定,以及正弦定理的应用,着重考查了推理与运算能力,属于基础题.4、B【解析】
要分清起止项,以及相邻两项的关系,由此即可分清增加的代数式。【详解】当n=k时,左边=k+1当n=k+1时,左边====k+1∴从k到k+1,左边需要增乘的代数式为22k+1【点睛】本题主要考查学生如何理解数学归纳法中的递推关系。5、D【解析】
根据函数图象依次求出振幅,周期,根据周期求出,将点代入解析式即可得解.【详解】根据图象可得:,最小正周期,,经过,,,,,所以,所以函数解析式为:.故选:D【点睛】此题考查根据函数图象求函数解析式,考查函数的图象和性质,尤其是对振幅周期的辨析,最后求解的值,一般根据最值点求解.6、D【解析】
根据不等式的性质判断.【详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【点睛】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.7、B【解析】
九个儿子的年龄成等差数列,公差为1.【详解】由题意九个儿子的年龄成等差数列,公差为1.记最小的儿子年龄为a1,则S9=9故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.8、A【解析】
事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.9、A【解析】
结合线面平行定理和举例判断.【详解】若,则可能平行或异面,故①错误;若,则可能与的交线平行,故②错误;若,则,所以,故③正确;若,则可能平行,相交或异面,故④错误;故选A.【点睛】本题线面关系的判断,主要依据线面定理和举例排除.10、B【解析】
根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【点睛】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.12、6【解析】
利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.13、【解析】
根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题14、【解析】
根据数量积的几何意义计算.【详解】在方向上的投影为.故答案为:1.【点睛】本题考查向量的投影,掌握投影的概念是解题基础.15、【解析】
根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.16、【解析】函数的定义域为故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)根据表格中的数据绘制出茎叶图,并结合茎叶图中数据的分布可比较出两个小区居民节水意识;(2)列举出所有的基本事件,确定所有的基本事件数,然后确定事件“小区家庭的用水量低于小区”所包含的基本事件数,利用古典概型的概率公式可计算出事件“小区家庭的用水量低于小区”的概率.【详解】(1)绘制如下茎叶图:由以上茎叶图可以看出,小区月用水量有的叶集中在茎、上,而小区月用水量有的叶集中在茎、上,由此可看出小区居民节水意识更好;(2)从用水量不少于的家庭中,、两个小区各随机抽取一户的结果:、、、、、、、,共个基本事件,小区家庭的用水量低于小区的的结果:、、,共个基本事件.所以,小区家庭的用水量低于小区的概率是.【点睛】本题考查茎叶图的绘制与应用,以及利用古典概型计算事件的概率,考查收集数据与处理数据的能力,考查计算能力,属于中等题.18、(1)证明见解析;(2)证明见解析.【解析】
(1)连结交于,连结,先证明,再证明平;(2)取的中点为,连结,,,先证明平面,再证明平面平面.【详解】证明:(1)连结交于,连结,由于棱柱的侧面是平行四边形,故为的中点,又为的中点,故是的中位线,所以,又平面,平面,所以平面.(2)取的中点为,连结,,,在中,,由,知为正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【点睛】本题主要考查空间位置关系的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、(1)(2)【解析】
(1)由中,D是边BC上的点,根据面积关系求得,再结合正弦定理,即可求解.(2)由,化简得到,再结合,解得,进而利用勾股定理求得的长.【详解】(1)由题意,在中,D是边BC上的点,可得,所以又由正弦定理,可得.(2)由,可得,所以,即,由(1)知,解得,又由,所以.【点睛】本题主要考查了三角形的正弦定理和三角形的面积公式的应用,其中解答中熟记解三角形的正弦定理,以及熟练应用三角的面积关系,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)证明见解析,;(2).【解析】
(1)由条件可得,即,运用等比数列的定义,即可得到结论;运用等比数列的通项公式可得所求通项。(2)数列的求和方法:错位相减法,结合等比数列的求和公式,可得所求的和。【详解】解:(1)证明:由,得,又,,又,所以是首相为1,公比为2的等比数列;,。(2)前项和,,两式相减可得:化简可得【点睛】本题考查利用辅助数列求通项公式,以及错位相减求和,考查学生的计算能力,是一道基础题。21、(1)见解析;(2)见解析【解析】
1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【详解】(1)连结BD交AC于O,连结EO,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年秋招:机械工程师笔试题及答案
- 2025年供应链专员招聘试题及答案
- 2024-2025学年广西玉林市八校高一(下)期中数学试卷(含解析)
- 2025年中华考试网试题及答案
- 2025年云计算试题库及答案
- 2025年球员考试题及答案
- 2025年小学多边形面积竞赛题库
- 2025年雪糕行业面试题及答案
- 2025年上海保教工作试题及答案
- 2025年污水处理考试题及答案
- 矿井托管运营方案(3篇)
- 高速公路建设工程施工班组管理规范DB32T 3713-2020
- 《聚碳酸酯合成》课件
- 氢气压缩机的介绍
- 2025年低压电工特种作业理论必背考试题(附答案)
- 全国民用建筑工程设计技术措施节能暖通空调动力
- 强电装修协议书范本
- 中介员工免责协议书
- 2024年安徽省蚌埠市“物业管理及公共服务”等知识考试题库及答案
- 社会主义核心价值观教案 敬业
- 环保型家具生产技术研究
评论
0/150
提交评论