安徽省安庆市2023-2024学年高一下数学期末检测模拟试题含解析_第1页
安徽省安庆市2023-2024学年高一下数学期末检测模拟试题含解析_第2页
安徽省安庆市2023-2024学年高一下数学期末检测模拟试题含解析_第3页
安徽省安庆市2023-2024学年高一下数学期末检测模拟试题含解析_第4页
安徽省安庆市2023-2024学年高一下数学期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆市2023-2024学年高一下数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若不等式的解集为空集,则实数a的取值范围是()A. B. C. D.2.已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为()A.4037 B.4038 C.4027 D.40283.若函数有零点,则实数的取值范围为()A. B. C. D.4.若直线与圆相切,则()A. B. C. D.5.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.6.在计算机BASIC语言中,函数表示整数a被整数b除所得的余数,如.用下面的程序框图,如果输入的,,那么输出的结果是()A.7 B.21 C.35 D.497.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.8.等差数列{an}的前n项和为Sn,若S9=S4,则S13=()A.13 B.7 C.0 D.19.已知函数是奇函数,若,则的取值范围是()A. B. C. D.10.已知=4,=3,,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若为的最小内角,则函数的值域为_____.12.若圆与圆的公共弦长为,则________.13.计算:______.14.将函数的图象向左平移个单位长度,得到函数的图象,则__________.15.空间一点到坐标原点的距离是_______.16.已知等差数列满足,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄,(单位:千元)的数据资料,算出,附:线性回归方程,其中为样本平均值.(1)求家庭的月储蓄对月收入的线性回归方程;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.18.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.19.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.20.若的最小值为.(1)求的表达式;(2)求能使的值,并求当取此值时,的最大值.21.在中,角A,B,C所对的边分别为a,b,c.已知,,.(1)求:(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

对分两种情况讨论分析得解.【详解】当时,不等式为,所以满足题意;当时,,综合得.故选:D【点睛】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解析】

由,对任意的实数,等式恒成立,且,得到an+1=an+2,由等差数列的定义求得结果.【详解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)•f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,则f(﹣1)•f(0)=f(﹣1),∵当x<0时,f(x)>1,∴f(﹣1)≠0,则f(0)=1,则f(an+1)f(﹣2﹣an)=1,等价为f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),则an+1﹣2﹣an=0,∴an+1﹣an=2.∴数列{an}是以1为首项,以2为公差的等差数列,首项a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故选:A【点睛】本题主要考查数列与函数的综合运用,根据抽象函数的关系结合等差数列的通项公式建立方程是解决本题的关键,属于中档题.3、D【解析】

令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【点睛】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.4、C【解析】

利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.5、D【解析】

设直线的方程为,代入点(1,0)的坐标即得解.【详解】设直线的方程为,由题得.所以直线的方程为.故选D【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.6、B【解析】

模拟执行循环体,即可得到输出值.【详解】,,,,继续执行得,,继续执行得,,结束循环,输出.故选:B.【点睛】本题考查循环体的执行,属程序框图基础题.7、A【解析】

利用正弦定理以及和与差的正弦公式可得答案;【详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【点睛】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.8、C【解析】

由题意,利用等差数列前n项和公式求出a1=﹣6d,由此能求出S13的值.【详解】∵等差数列{an}的前n项和为Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故选:C.【点睛】本题考查等差数列的前n项和公式的应用,考查运算求解能力,是基础题.9、C【解析】

由题意首先求得m的值,然后结合函数的性质求解不等式即可.【详解】函数为奇函数,则恒成立,即恒成立,整理可得:,据此可得:,即恒成立,据此可得:.函数的解析式为:,,当且仅当时等号成立,故奇函数是定义域内的单调递增函数,不等式即,据此有:,由函数的单调性可得:,求解不等式可得的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).10、C【解析】

由已知中,,,我们可以求出的值,进而根据数量积的夹角公式,求出,,进而得到向量与的夹角;【详解】,,,,,所以向量与的夹角为.故选C【点睛】本题主要考查平面向量的数量积运算和向量的夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

依题意,,利用辅助角公式得,利用正弦函数的单调性即可求得的取值范围,在利用换元法以及同角三角函数基本关系式把所求问题转化结合基本不等式即可求解.【详解】∵为的最小内角,故,又,因为,故,∴取值范围是.令,则且∴,令,由双勾函数可知在上为增函数,故,故.故答案为:.【点睛】本题考查同角的三角函数的基本关系、辅助角公式以及正弦型函数的值域,注意根据代数式的结构特点换元后将三角函数的问题转化为双勾函数的问题,本题属于中档题.12、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.13、【解析】

直接利用反三角函数运算法则写出结果即可.【详解】解:.故答案为:.【点睛】本题考查反三角函数的运算法则的应用,属于基础题.14、【解析】

先利用辅助角公式将函数的解析式化简,根据三角函数的变化规律求出函数的解析式,即可计算出的值.【详解】,由题意可得,因此,,故答案为.【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为(或)的形式,其次要注意左加右减指的是在自变量上进行加减,考查计算能力,属于中等题.15、【解析】

直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.16、【解析】

由等差数列的性质计算.【详解】∵是等差数列,∴,∴.故答案为:1.【点睛】本题考查等差数列的性质,属于基础题.等差数列的性质如下:在等差数列中,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1.7【解析】

(1)根据数据,利用最小二乘法,即可求得y对月收入x的线性回归方程回归方程x;(2)将x=7代入即可预测该家庭的月储蓄.【详解】(1)由题意知,,∴由.故所求回归方程为(2)将代入回归方程可以预测该家庭的月储蓄为(千元).【点睛】本题考查线性回归方程的应用,考查最小二乘法求线性回归方程,考查转化思想,属于中档题.18、(1);(2);(3).【解析】

(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【点睛】本题考查数列新定义“阶稳增数列”的应用,涉及等比数列的单调性问题、数列极限的存在性问题,同时也考查了错位相减法求和,解题的关键就是理解新定义“阶稳增数列”,考查分析问题和解决问题能力,考查了分类讨论思想的应用,属于难题.19、(1)见解析;(2)【解析】

(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【点睛】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,考查了二面角的平面角作法,考查空间思维能力及解三角形,考查了方程思想及计算能力,属于难题.20、(1);(2)的最大值为【解析】试题分析:(1)通过同角三角函数关系将化简,再对函数配方,然后讨论对称轴与区间的位置关系,从而求出的最小值;(2)由,则根据的解析式可知只能在内解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论