版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州越秀区培正中学2024届高一下数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.42.已知集,集合,则A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)3.已知等比数列中,,且有,则()A. B. C. D.4.如果角的终边经过点,那么的值是()A. B. C. D.5.一几何体的三视图如图所示,则该几何体的表面积为()A.16 B.20 C.24 D.286.已知之间的几组数据如下表:
1
2
3
4
5
6
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.7.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为()A.600 B.800 C.1000 D.12008.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.29.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向10.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为2,前n项和为,则=______.12.已知实数满足,则的最小值为_______.13.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.14.从集合A={-1,1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为_____.15.设等比数列满足a1+a2=–1,a1–a3=–3,则a4=___________.16.已知直线是函数(其中)图象的一条对称轴,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.18.如图,在正方体中,是的中点,在上,且.(1)求证:平面;(2)在线段上存在一点,,若平面,求实数的值.19.在△中,角、、所对的边分别为、、,且.(1)求的值;(2)若,求的最大值;(3)若,,为的中点,求线段的长度.20.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列.(1)求数列的通项公式;(2)求数列的前项和;(3)求数列的最大值.21.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.2、D【解析】
根据函数的单调性解不等式,再解绝对值不等式,最后根据交集的定义求解.【详解】由得,由得,所以,故选D.【点睛】本题考查指数不等式和绝对值不等式的解法,集合的交集.指数不等式要根据指数函数的单调性求解.3、A【解析】,,所以选A4、D【解析】
根据任意角的三角函数定义直接求解.【详解】因为角的终边经过点,所以,故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.5、B【解析】
根据三视图可还原几何体,根据长度关系依次计算出各个侧面和上下底面的面积,加和得到表面积.【详解】有三视图可得几何体的直观图如下图所示:其中:,,,则:,,,,几何体表面积:本题正确选项:【点睛】本题考查几何体表面积的求解问题,关键是能够根据三视图准确还原几何体,从而根据长度关系可依次计算出各个面的面积.6、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′7、B【解析】
根据题意可设抽到高一和高二年级学生人数分别为和,则,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数.【详解】根据题意可设抽到高一和高二年级学生人数分别为和,则,即,所以高一年级和高二年级抽到的人数分别是12人和8人,则该校高二年级学生人数为人.故选:.【点睛】本题考查分层抽样的方法,属于容易题.8、B【解析】根据椭圆可以知焦点为,离心率,故选B.9、A【解析】
通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【点睛】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.10、A【解析】
求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【点睛】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.12、【解析】
实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【点睛】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.13、4【解析】
先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.14、【解析】由题意,基本事件总数为3×3=9,其中满足直线y=kx+b不经过第三象限的,即满足有k=-1,b=1或k=-1,b=2两种,故所求的概率为.15、-8【解析】设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:,由可得:,代入①可得,由等比数列的通项公式可得.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.16、【解析】
根据正弦函数图象的对称性可得,由此可得答案.【详解】依题意得,所以,即,因为,所以或,故答案为:【点睛】本题考查了正弦函数图象的对称轴,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解析】
(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的求解,属于中档题.18、(1)证明见解析;(2)【解析】
(1)分别证明与即可.(2)设平面与的交点为,利用线面与面面平行的判定与性质可知只需满足,再利用平行所得的相似三角形对应边成比例求解即可.【详解】(1)连接.因为正方体,故,且,又.故平面.又平面,故.同理,,,故.又,平面.故平面.(2)设平面与的交点为,连接.因为,平面,,故.又,故.设正方体边长为6,则因为,故故,所以.又平面则只需即可.此时又因为,故四边形为平行四边形.故.此时.故.故【点睛】本题主要考查了线面垂直的证明以及根据线面平行求解参数的问题,需要根据题意找到线与所证平面内的一条直线平行,并利用平面几何中的相似方法求解.属于中档题.19、(1);(2);(3).【解析】
(1)由三角恒等变换的公式,化简,代入即可求解.(2)在中,由余弦定理,结合基本不等式,求得,即可得到答案.(3)设,在中,由余弦定理,求得,分别在和中,利用余弦定理,列出方程,即可求解.【详解】(1)由题意,在中,,则又由.(2)在中,由余弦定理可得,即,可得,当且仅当等号成立,所以的最大值为.(3)设,如图所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因为,所以,由①+②,可得,即,解得,即.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.20、(1)(2)(3)【解析】
(1)先根据题设知,再利用求得,验证符合,最后答案可得.
(2)由题设可知,把代入,然后用错位相减法求和;(3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得最大值..【详解】解:(1)由已知得:,∵当时,,又当时,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即为最大,故最大值为.【点睛】本题主要考查了数列的递推式解决数列的通项公式和求和问题,考查数列最大项的求解,是中档题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院医疗废物处理制度
- 企业员工晋升与发展制度
- 会议议程调整与临时决策制度
- 2026年财务成本控制与优化考试题集
- 2026年体育教育理论初级体育教师专业知识模拟题
- 2026年医疗行业面试知识问答与技巧
- 2026年材料科学高级职称评审专业知识题集与解析
- 2026年信息论协议
- 2026年新版声纹验证协议
- 唐代书法知识
- 文献检索与论文写作 课件 12.1人工智能在文献检索中应用
- 艾滋病母婴传播培训课件
- 公司职务犯罪培训课件
- 运营团队陪跑服务方案
- 北京中央广播电视总台2025年招聘124人笔试历年参考题库附带答案详解
- 2026年高端化妆品市场分析报告
- 工业锅炉安全培训课件
- 2026中国单细胞测序技术突破与商业化应用前景报告
- 2025年深圳低空经济中心基础设施建设研究报告
- 中科曙光入职在线测评题库
- 叉车初级资格证考试试题与答案
评论
0/150
提交评论